yiking/main.py

200 lines
8.0 KiB
Python
Raw Normal View History

2024-12-10 22:14:39 +00:00
2024-12-15 13:28:27 +00:00
"""
Heres a detailed prompt you can use to generate the same GUI code anew using a language model:
---
**Prompt:**
"I need a Python program to create a Tkinter-based GUI named 'Yiking'. The GUI will control parameters for an OpenCV image processing program. The program must be split into two files:
1. **`process.py`**: Contains a `process_frame` function that takes parameters as input, performs OpenCV operations (not implemented in this request), and returns an image as a NumPy array and a result string.
2. **`gui.py`**: Implements the GUI and integrates with `process.py`. Here are the detailed requirements:
### GUI Details:
- **Window Title**: 'Yiking'
- **Layout**:
- **Row 1**: Two columns
- Left column: Group of sliders for controlling parameters.
- Right column: A canvas for displaying a processed image (1024x768 pixels).
- **Row 2**: Two columns
- Left column: A "Run" button.
- Right column: A text box for displaying results or error messages.
- **Widgets**:
- Sliders with corresponding min, max, and default values:
- `minDist` = (0, 500, 100)
- `param1` = (0, 500, 30)
- `param2` = (0, 400, 25)
- `minRadius` = (0, 100, 5)
- `maxRadius` = (0, 1000, 1000)
- `color1_R_min` = (0, 64, 5)
- `color1_V_min` = (0, 64, 5)
- `color1_B_min` = (0, 64, 5)
- `color1_R_min` = (0, 64, 5)
- `color1_V_min` = (0, 64, 5)
- `color1_B_min` = (0, 64, 5)
- Sliders must snap to increments of 5 and synchronize with a text entry box.
- The image canvas must resize input images to fit within 1024x768 while maintaining aspect ratio.
- A "Run" button executes the `process_frame` function with the current slider values.
- If an exception occurs in `process_frame`, it should display the error in the result text box and clear the canvas.
### Key Features:
- Use the `Pillow` library (`PIL`) to handle image conversion and resizing.
- Catch exceptions in `run_process` to display error messages.
- Keep the GUI responsive and visually clean.
### Output:
Please provide a fully functional `gui.py` implementation meeting these requirements. Include imports, class structure, and the `__main__` block. Do not implement the OpenCV functionality within `process.py`assume it exists for integration purposes."
---
This prompt is designed to give the LLM everything it needs to generate the desired `gui.py` code. Let me know if you'd like to adjust it further!
"""
2024-12-15 17:09:32 +00:00
import tkinter as tk
from tkinter import ttk
from process import process_frame
from PIL import Image, ImageTk # Required for displaying images
import cv2 # OpenCV for numpy array to image conversion
2024-12-10 22:14:39 +00:00
class OpenCVInterface:
def __init__(self, root):
self.root = root
self.root.title("Yiking")
# Variables for sliders with min, max, and default values
self.variables_config = {
"minDist": (0, 500, 100),
"param1": (0, 500, 30),
"param2": (0, 400, 25),
"minRadius": (0, 100, 5),
"maxRadius": (0, 1000, 1000),
2024-12-15 17:09:32 +00:00
"color1_R_min": (0, 64, 5),
"color1_R_max": (0, 64, 5),
"color1_V_min": (0, 64, 5),
"color1_V_max": (0, 64, 5),
"color1_B_min": (0, 64, 5),
"color1_B_max": (0, 64, 5),
2024-12-10 22:14:39 +00:00
}
self.variables = {
name: tk.IntVar(value=config[2]) for name, config in self.variables_config.items()
}
# GUI Layout
self.setup_gui()
def setup_gui(self):
# Root grid layout
self.root.rowconfigure(1, weight=1)
self.root.columnconfigure(0, weight=1)
self.root.columnconfigure(1, weight=1)
2024-12-15 17:09:32 +00:00
# Dropdown for camera selection
camera_frame = ttk.Frame(self.root)
camera_frame.grid(row=0, column=0, sticky="nsew")
self.camera_selection = tk.StringVar()
self.camera_dropdown = ttk.Combobox(camera_frame, textvariable=self.camera_selection)
self.camera_dropdown.grid(row=0, column=0, padx=5, pady=5)
self.populate_camera_dropdown()
2024-12-10 22:14:39 +00:00
# Left Column: Sliders
left_frame = ttk.Frame(self.root)
2024-12-15 17:09:32 +00:00
left_frame.grid(row=1, column=0, sticky="nswe")
2024-12-10 22:14:39 +00:00
for var_name, var in self.variables.items():
min_val, max_val, _ = self.variables_config[var_name]
self.create_slider(left_frame, var_name, var, min_val, max_val)
# Right Column: Image Placeholder
2024-12-15 17:09:32 +00:00
self.image_canvas = tk.Canvas(self.root, bg="gray", width=1024, height=768)
self.image_canvas.grid(row=0, column=1, rowspan=2, sticky="nswe")
2024-12-10 22:14:39 +00:00
# Bottom Row: Run Button and Result
run_button = ttk.Button(self.root, text="Run", command=self.run_process)
2024-12-15 17:09:32 +00:00
run_button.grid(row=2, column=0, sticky="we")
self.result_text = tk.Text(self.root, height=5, width=40)
self.result_text.grid(row=2, column=1, sticky="nswe")
def populate_camera_dropdown(self):
# Detect connected cameras using OpenCV
cameras = []
for i in range(5): # Check first 5 indexes for cameras
cap = cv2.VideoCapture(i)
if cap.read()[0]:
cameras.append(f"Camera {i}")
cap.release()
self.camera_dropdown["values"] = cameras
if cameras:
self.camera_dropdown.current(0)
2024-12-10 22:14:39 +00:00
def create_slider(self, parent, name, variable, min_val, max_val):
frame = ttk.Frame(parent)
frame.pack(fill="x", padx=5, pady=2)
# Label
label = ttk.Label(frame, text=name)
label.pack(side="left")
def on_slide(value):
# Round value to nearest multiple of 5
2024-12-15 17:09:32 +00:00
rounded_value = round(float(value) / 5) * 5
2024-12-10 22:14:39 +00:00
variable.set(int(rounded_value)) # Update the variable with the rounded value
# Slider
slider = ttk.Scale(
frame, from_=min_val, to=max_val,
variable=variable, orient="horizontal", command=on_slide
)
slider.pack(side="left", fill="x", expand=True, padx=5)
# Entry box
entry = ttk.Entry(frame, textvariable=variable, width=5)
entry.pack(side="left")
def run_process(self):
# Collect slider values
parameters = {key: var.get() for key, var in self.variables.items()}
try:
2024-12-15 17:09:32 +00:00
# Get selected camera ID
cam_id = int(self.camera_selection.get().split()[-1])
2024-12-10 22:14:39 +00:00
# Call process function
2024-12-15 17:09:32 +00:00
image, result_text = process_frame(parameters, cam_id=cam_id)
2024-12-10 22:14:39 +00:00
# Convert OpenCV image (numpy array) to PIL Image for Tkinter display
if image is not None:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # Convert BGR to RGB
pil_image = Image.fromarray(image) # Convert numpy array to PIL Image
# Rescale image to fit within 1024x768 while preserving aspect ratio
2024-12-15 17:09:32 +00:00
max_width, max_height = 1024, 768
2024-12-10 22:14:39 +00:00
original_width, original_height = pil_image.size
aspect_ratio = min(max_width / original_width, max_height / original_height)
new_width = int(original_width * aspect_ratio)
new_height = int(original_height * aspect_ratio)
pil_image = pil_image.resize((new_width, new_height), Image.Resampling.LANCZOS)
2024-12-15 17:09:32 +00:00
2024-12-10 22:14:39 +00:00
tk_image = ImageTk.PhotoImage(pil_image) # Convert PIL Image to Tkinter Image
# Clear canvas and display the image
self.image_canvas.delete("all")
self.image_canvas.create_image(512, 384, image=tk_image, anchor="center")
self.image_canvas.image = tk_image # Keep a reference to prevent garbage collection
# Update result text
self.result_text.delete(1.0, tk.END)
self.result_text.insert(tk.END, result_text)
except Exception as exc:
# Handle and display exceptions
self.result_text.delete(1.0, tk.END)
self.result_text.insert(tk.END, str(exc))
self.image_canvas.delete("all")
if __name__ == "__main__":
root = tk.Tk()
app = OpenCVInterface(root)
root.mainloop()