Compare commits

..

4 Commits

Author SHA1 Message Date
7d159087b3 fix: angle correction
add some point at begin and endm beacause angles wasn't calculate
2023-08-25 00:30:29 +02:00
e409071cc1 feat: add some point to respect angle position 2023-08-23 23:46:16 +02:00
a006bd87a6 fix: empty frame in redis
It's caused an infinit loop. Now some point in (0, 0) with no light ar
added instead of added empty frame.
2023-08-23 15:48:05 +02:00
baf149ef8a humm 2023-08-23 13:13:53 +02:00
29 changed files with 1124 additions and 1395 deletions

View File

@ -35,3 +35,7 @@ Until = 48
[[transformers]] [[transformers]]
[transformers.intensity] [transformers.intensity]
[[transformers]]
[transformers.angle_correction]
coef = 2000.0

View File

@ -1,151 +0,0 @@
extern crate ether_dream;
use ether_dream::dac;
fn main() {
println!("Listening for an Ether Dream DAC...");
let (dac_broadcast, source_addr) = ether_dream::recv_dac_broadcasts()
.expect("failed to bind to UDP socket")
.filter_map(Result::ok)
.next()
.unwrap();
let mac_address = dac::MacAddress(dac_broadcast.mac_address);
println!(
"Discovered DAC \"{}\" at \"{}\"! Connecting...",
mac_address, source_addr
);
// Establish the TCP connection.
let mut stream = dac::stream::connect(&dac_broadcast, source_addr.ip().clone()).unwrap();
// If we want to create an animation (in our case a moving sine wave) we need a frame rate.
let frames_per_second = 60.0;
// Lets use the DAC at an eighth the maximum scan rate.
let points_per_second = stream.dac().max_point_rate / 32;
// Determine the number of points per frame given our target frame and point rates.
let points_per_frame = (points_per_second as f32 / frames_per_second) as u16;
println!(
"Preparing for playback:\n\tframe_hz: {}\n\tpoint_hz: {}\n\tpoints_per_frame: {}\n",
frames_per_second, points_per_second, points_per_frame
);
// Prepare the DAC's playback engine and await the repsonse.
stream
.queue_commands()
.prepare_stream()
.submit()
.err()
.map(|err| {
eprintln!(
"err occurred when submitting PREPARE_STREAM \
command and listening for response: {}",
err
);
});
println!("Beginning playback!");
// The sine wave used to generate points.
let mut sine_wave = SineWave {
point: 0,
points_per_frame,
frames_per_second,
};
// Queue the initial frame and tell the DAC to begin producing output.
let n_points = points_to_generate(stream.dac());
stream
.queue_commands()
.data(sine_wave.by_ref().take(n_points))
.begin(0, points_per_second)
.submit()
.err()
.map(|err| {
eprintln!(
"err occurred when submitting initial DATA and BEGIN \
commands and listening for response: {}",
err
);
});
eprintln!("Stream dac{:?}", stream.dac());
// Loop and continue to send points forever.
loop {
// Determine how many points the DAC can currently receive.
let n_points = points_to_generate(stream.dac());
if let Err(err) = stream
.queue_commands()
.data(sine_wave.by_ref().take(n_points))
.submit()
{
eprintln!(
"err occurred when submitting DATA command and listening \
for response: {}",
err
);
break;
}
}
// Tell the DAC to stop producing output and return to idle. Wait for the response.
//
// Note that the DAC is commanded to stop on `Drop` if this is not called and any errors
// produced are ignored.
stream
.queue_commands()
.stop()
.submit()
.expect("err occurred when submitting STOP command and listening for response");
}
// Determine the number of points needed to fill the DAC.
fn points_to_generate(dac: &ether_dream::dac::Dac) -> usize {
dac.buffer_capacity as usize - 1 - dac.status.buffer_fullness as usize
}
// An iterator that endlessly generates a sine wave of DAC points.
//
// The sine wave oscillates at a rate of once per second.
struct SineWave {
point: u32,
points_per_frame: u16,
frames_per_second: f32,
}
impl Iterator for SineWave {
type Item = ether_dream::protocol::DacPoint;
fn next(&mut self) -> Option<Self::Item> {
let coloured_points_per_frame = self.points_per_frame - 1;
let i = (self.point % self.points_per_frame as u32) as u16;
let hz = 1.0;
let fract = i as f32 / coloured_points_per_frame as f32;
let phase = (self.point as f32 / coloured_points_per_frame as f32) / self.frames_per_second;
let amp = (hz * (fract + phase) * 2.0 * std::f32::consts::PI).sin();
let (r, g, b) = match i {
i if i == coloured_points_per_frame || i < 13 => (0, 0, 0),
_ => (std::u16::MAX, std::u16::MAX, std::u16::MAX),
};
let x_min = std::i16::MIN;
let x_max = std::i8::MAX as i16;
let x = (x_min as f32 + fract * (x_max as f32 - x_min as f32)) as i16;
let y = (amp * x_max as f32) as i16;
let control = 0;
let (u1, u2) = (0, 0);
let p = ether_dream::protocol::DacPoint {
control,
x,
y,
i,
r,
g,
b,
u1,
u2,
};
self.point += 1;
Some(p)
}
}

View File

@ -1,34 +1,26 @@
use std::io::_print; ///
/** /// $ cargo run --example populate_redis
///
# Populate Redis Example
**This script simulates the redis content provided by the LJ Python / web tool**
$ cargo run --example populate_redis
**/
use redis::{ use redis::{
//RedisResult, //RedisResult,
Client, Client,
Commands, Commands,
Connection, Connection,
}; };
fn do_something() -> redis::RedisResult<()> { fn do_something() -> redis::RedisResult<()> {
let client = Client::open("redis://127.0.0.1/")?; let client = Client::open("redis://127.0.0.1/")?;
let mut con: Connection = client.get_connection()?; let mut con: Connection = client.get_connection()?;
let _ = con.set("/clientkey", "/pl/0/")?;
let _ = con.set("/EDH/0", "[[1.0, 0.0, 0.0],\n [ 0.0, 1.0, 0.0],\n [ 0.0, 0.0, 1.0]]")?;
let _ = con.set("/kpps/0", "5000")?;
let _ = con.set("/intensity/0", "255")?;
let _ = con.set("/pl/0/0", "[(1000, 2000, 0), (1000, 1000, 65535), (2000, 1000, 65535), (2000, 2000, 65535), (1000, 2000, 65535)]")?;
Ok(())
}
fn main() { let _ = con.set("/clientkey", "/pl/0/")?;
match do_something() { let _ = con.set(
Err(err) => println!("Something wrong occured: {:?}", err), "/EDH/0",
Ok(..) => println!("Successfully inserted content in Redis") "[[1.0, 0.0, 0.0],\n [ 0.0, 1.0, 0.0],\n [ 0.0, 0.0, 1.0]]",
} )?;
let _ = con.set("/kpps/0", "5000")?;
let _ = con.set("/intensity/0", "255")?;
Ok(())
}
fn main() {
_ = do_something();
} }

View File

@ -1,7 +1,6 @@
/// ///
/// $ cargo run --example simple_client /// $ cargo run --example simple_client
/// ///
use redis::{ use redis::{
//RedisResult, //RedisResult,
Client, Client,
@ -15,28 +14,24 @@ fn do_something() -> redis::RedisResult<()> {
let client = Client::open("redis://127.0.0.1/")?; let client = Client::open("redis://127.0.0.1/")?;
let mut con: Connection = client.get_connection()?; let mut con: Connection = client.get_connection()?;
let start = Instant::now(); let start = Instant::now();
loop { loop {
let elapsed = start.elapsed(); let elapsed = start.elapsed();
let time = 60.0 * elapsed.as_millis() as f32 / 1000.0; let time = 60.0 * elapsed.as_millis() as f32 / 1000.0;
let mut v : Vec<(f32,f32,u32)> = vec![]; let mut v: Vec<(f32, f32, u32)> = vec![];
for i in 0..128 {
let a = (time + i as f32) / 128.0 * std::f32::consts::PI * 2.0;
let r = 1200.0 + (a*5.0).cos() * (500.0 * (time/5.0).cos());
let x = a.cos() * r; for i in 0..128 {
let y = a.sin() * r; let a = (time + i as f32) / 128.0 * std::f32::consts::PI * 2.0;
let col = if i % 8 < 4 { let r = 1200.0 + (a * 5.0).cos() * (500.0 * (time / 5.0).cos());
0x000000ff
} else { let x = a.cos() * r;
0x00ff0000 let y = a.sin() * r;
}; let col = if i % 8 < 4 { 0x000000ff } else { 0x00ff0000 };
v.push((x,y,col)); v.push((x, y, col));
} }
// println!("{:?}", v); // println!("{:?}", v);
let _ = con.set("/pl/0/0", format!("{:?}", v))?; let _ = con.set("/pl/0/0", format!("{:?}", v))?;
} }
// Ok(()) // Ok(())
} }

View File

@ -1,46 +0,0 @@
///
/// $ cargo run --example simple_client
///
use redis::{
//RedisResult,
Client,
Commands,
Connection,
};
use std::time::Instant;
fn do_something() -> redis::RedisResult<()> {
let client = Client::open("redis://127.0.0.1/")?;
let mut con: Connection = client.get_connection()?;
let start = Instant::now();
loop {
let elapsed = start.elapsed();
let time = 60.0 * elapsed.as_millis() as f32 / 1000.0;
let mut v: Vec<(f32, f32, u32)> = vec![];
for i in 0..128 {
let a = (time + i as f32) / 128.0 * std::f32::consts::PI * 2.0;
let r = 1200.0 + (a * 5.0).cos() * (500.0 * (time / 5.0).cos());
let x = a.cos() * r;
let y = a.sin() * r;
let col = if i % 8 < 4 {
0x000000ff
} else {
0x00ff0000
};
v.push((x, y, col));
}
// println!("{:?}", v);
let _ = con.set("/pl/0/0", format!("{:?}", v))?;
}
// Ok(())
}
fn main() {
_ = do_something();
}

View File

@ -1,106 +1,109 @@
use config::Config;
use serde::{Serialize, Deserialize};
use crate::errors::{LJError, LJResult}; use crate::errors::{LJError, LJResult};
use crate::transformer; use crate::transformer;
use config::Config;
use serde::{Deserialize, Serialize};
#[derive(Serialize, Deserialize, Debug, Clone)] #[derive(Serialize, Deserialize, Debug, Clone)]
pub struct Conf { pub struct Conf {
pub laser_id: u8, pub laser_id: u8,
pub debug: bool, pub debug: bool,
pub redis_url: String, pub redis_url: String,
pub dac: DacFamily, pub dac: DacFamily,
#[serde(default)] #[serde(default)]
pub transformers: Vec<TransformConf>, pub transformers: Vec<TransformConf>,
} }
#[derive(Serialize, Deserialize, Debug, Clone)] #[derive(Serialize, Deserialize, Debug, Clone)]
pub enum DacFamily { pub enum DacFamily {
#[serde(rename = "helios")] #[serde(rename = "helios")]
Helios(HeliosConf), Helios(HeliosConf),
#[serde(rename = "etherdream")] #[serde(rename = "etherdream")]
Etherdream(EtherDreamConf), Etherdream(EtherDreamConf),
#[serde(rename = "dummy")] #[serde(rename = "dummy")]
Dummy, Dummy,
} }
#[derive(Serialize, Deserialize, Debug, Clone)] #[derive(Serialize, Deserialize, Debug, Clone)]
pub struct HeliosConf { pub struct HeliosConf {
pub id: u8, pub id: u8,
} }
#[derive(Serialize, Deserialize, Debug, Clone)] #[derive(Serialize, Deserialize, Debug, Clone)]
pub struct EtherDreamConf { pub struct EtherDreamConf {
pub ip: String, pub ip: String,
} }
#[derive(Serialize, Deserialize, Debug, Clone)] #[derive(Serialize, Deserialize, Debug, Clone)]
pub enum TransformConf { pub enum TransformConf {
#[serde(rename = "translate")] #[serde(rename = "translate")]
Translate(transformer::Translate), Translate(transformer::Translate),
#[serde(rename = "replicate")] #[serde(rename = "replicate")]
Replicate(transformer::Replicate), Replicate(transformer::Replicate),
#[serde(rename = "rotate")] #[serde(rename = "rotate")]
Rotate(transformer::Rotate), Rotate(transformer::Rotate),
#[serde(rename = "flip_horizontal")] #[serde(rename = "flip_horizontal")]
FlipH(transformer::FlipHorizontal), FlipH(transformer::FlipHorizontal),
#[serde(rename = "flip_vertical")] #[serde(rename = "flip_vertical")]
FlipV(transformer::FlipVertical), FlipV(transformer::FlipVertical),
#[serde(rename = "grid")] #[serde(rename = "grid")]
Grid(transformer::Grid), Grid(transformer::Grid),
#[serde(rename = "homography")] #[serde(rename = "homography")]
Homography(transformer::Homography), Homography(transformer::Homography),
#[serde(rename = "helios_to_etherdream")] #[serde(rename = "angle_correction")]
HeliosToEtherdream(transformer::HeliosToEtherdream), AngleOptimisation(transformer::AngleOptimisation),
#[serde(rename = "intensity")]
Intensity(transformer::Intensity),
} }
impl Conf { impl Conf {
pub fn new(path: &str) -> LJResult<Conf> { pub fn new(path: &str) -> LJResult<Conf> {
let settings = Config::builder() let settings = Config::builder()
.add_source(config::File::with_name(path)) .add_source(config::File::with_name(path))
.build()?; .build()?;
let conf: Conf = settings.try_deserialize().map_err(LJError::Config)?; dbg!("path:", path);
Ok(conf) //println!("plop");
} dbg!(settings.clone());
let conf: Conf = settings.try_deserialize().map_err(LJError::Config)?;
pub fn get_transformers(&self) -> Vec<Box<dyn transformer::Transformers>> { //println!("plum");
let mut v = vec![]; Ok(conf)
for t in &self.transformers { }
let t: Box<dyn transformer::Transformers> = match t {
TransformConf::FlipH(r) => Box::new(*r),
TransformConf::FlipV(r) => Box::new(*r),
TransformConf::Grid(r) => Box::new(*r),
TransformConf::HeliosToEtherdream(r) => Box::new(*r),
TransformConf::Homography(r) => Box::new(*r),
TransformConf::Intensity(r) => Box::new(*r),
TransformConf::Replicate(r) => Box::new(*r),
TransformConf::Rotate(r) => Box::new(*r),
TransformConf::Translate(t) => Box::new(*t),
};
v.push(t);
}
v
}
#[allow(dead_code)] //println!("plop");
pub fn dump() {
let conf = Conf { pub fn get_transformers(&self) -> Vec<Box<dyn transformer::Transformers>> {
laser_id: 0, let mut v = vec![];
debug: true, for t in &self.transformers {
redis_url: "redis://127.0.0.1:6379/".to_string(), let t: Box<dyn transformer::Transformers> = match t {
dac: DacFamily::Helios(HeliosConf { id: 0 }), TransformConf::Translate(t) => Box::new(*t),
transformers: vec![ TransformConf::Replicate(r) => Box::new(*r),
TransformConf::Translate(transformer::Translate { TransformConf::Rotate(r) => Box::new(*r),
x: 2000.0, TransformConf::FlipH(r) => Box::new(*r),
y: 2000.0, TransformConf::FlipV(r) => Box::new(*r),
}), TransformConf::Grid(r) => Box::new(*r),
TransformConf::Replicate(transformer::Replicate::Until(48)), TransformConf::Homography(r) => Box::new(*r),
], TransformConf::AngleOptimisation(r) => Box::new(*r),
}; };
let s = toml::to_string(&conf).unwrap(); v.push(t);
println!("{}", s); }
} v
}
#[allow(dead_code)]
pub fn dump() {
let conf = Conf {
laser_id: 0,
debug: true,
redis_url: "redis://127.0.0.1:6379/".to_string(),
dac: DacFamily::Helios(HeliosConf { id: 0 }),
transformers: vec![
TransformConf::Translate(transformer::Translate {
x: 2000.0,
y: 2000.0,
}),
TransformConf::Replicate(transformer::Replicate::Until(48)),
],
};
let s = toml::to_string(&conf).unwrap();
println!("{}", s);
}
} }

View File

@ -1,15 +1,15 @@
mod helios;
mod dummy; mod dummy;
mod etherdream; mod etherdream;
mod helios;
use std::fmt;
use crate::conf::{Conf, DacFamily /*EtherDreamConf, HeliosConf*/}; use crate::conf::{Conf, DacFamily /*EtherDreamConf, HeliosConf*/};
use crate::device::helios::HeliosDevice;
use crate::device::dummy::DummyDevice; use crate::device::dummy::DummyDevice;
use crate::device::etherdream::EtherdreamDevice;
use crate::device::helios::HeliosDevice;
use crate::errors::LJResult; use crate::errors::LJResult;
use crate::point::Point; use crate::point::Point;
use serde::Serialize; use serde::Serialize;
use crate::device::etherdream::EtherdreamDevice; use std::fmt;
/* /*
self.protocol_version, self.protocol_version,
@ -26,24 +26,25 @@ self.point_count
#[repr(u8)] #[repr(u8)]
#[derive(Debug, PartialEq, Serialize, Copy, Clone)] #[derive(Debug, PartialEq, Serialize, Copy, Clone)]
pub enum PlaybackState { pub enum PlaybackState {
IDLE = 0, IDLE = 0,
PREPARE = 1, PREPARE = 1,
PLAYING = 2 PLAYING = 2,
UNKNOWN = 99,
} }
impl fmt::Display for PlaybackState { impl fmt::Display for PlaybackState {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{:?}", self) write!(f, "{:?}", self)
} }
} }
#[derive(Debug)] #[derive(Debug)]
pub struct Status { pub struct Status {
pub last_traced_at: String, pub last_traced_at: String,
pub properties: Vec<String>, pub properties: Vec<String>,
pub playback_state: PlaybackState, pub playback_state: PlaybackState,
pub capacity: usize, pub capacity: u16,
pub lack: String, pub lack: String,
} }
// /lstt/lasernumber etherdream last_status.playback_state (0: idle 1: prepare 2: playing) // /lstt/lasernumber etherdream last_status.playback_state (0: idle 1: prepare 2: playing)
@ -51,21 +52,17 @@ pub struct Status {
// /lack/lasernumber "a": ACK "F": Full "I": invalid. 64 or 35 for no connection. // /lack/lasernumber "a": ACK "F": Full "I": invalid. 64 or 35 for no connection.
pub trait Device { pub trait Device {
fn status(&mut self) -> Status; fn status(&mut self) -> Status;
fn draw( fn draw(&mut self, frame: Vec<Point>, speed: u32) -> LJResult<()>;
&mut self, fn stop(&mut self) -> LJResult<()>;
frame: Vec<Point>, fn grid(&mut self) -> Vec<Point>;
speed: u32,
) -> LJResult<()>;
fn stop(&mut self) -> LJResult<()>;
fn grid(&mut self) -> Vec<Point>;
} }
pub fn device_factory(config: &Conf) -> LJResult<Box<dyn Device>> { pub fn device_factory(config: &Conf) -> LJResult<Box<dyn Device>> {
let device: Box<dyn Device> = match &config.dac { let device: Box<dyn Device> = match &config.dac {
DacFamily::Helios(conf) => Box::new(HeliosDevice::new(conf)?), DacFamily::Helios(conf) => Box::new(HeliosDevice::new(conf)?),
DacFamily::Etherdream( conf) => Box::new( EtherdreamDevice::new(conf)?), DacFamily::Etherdream(conf) => Box::new(EtherdreamDevice::new(conf)?),
DacFamily::Dummy => Box::new(DummyDevice::new()?) DacFamily::Dummy => Box::new(DummyDevice::new()?),
}; };
Ok(device) Ok(device)
} }

View File

@ -1,43 +1,44 @@
use crate::device::{Device, Status, PlaybackState}; use crate::device::{Device, PlaybackState, Status};
use crate::errors::LJResult; use crate::errors::LJResult;
use crate::point::{Color, Point}; use crate::point::{Color, Point};
use log::debug; use log::debug;
pub struct DummyDevice { pub struct DummyDevice {
state: PlaybackState state: PlaybackState,
} }
impl DummyDevice { impl DummyDevice {
pub fn new() -> LJResult<Self> { pub fn new() -> LJResult<Self> {
Ok(Self { state: PlaybackState::IDLE }) Ok(Self {
} state: PlaybackState::IDLE,
})
}
} }
impl Device for DummyDevice { impl Device for DummyDevice {
fn status(&mut self) -> Status { fn status(&mut self) -> Status {
Status { Status {
last_traced_at: "never".to_string(), last_traced_at: "never".to_string(),
properties: vec!["foo".to_string()], properties: vec!["foo".to_string()],
playback_state: self.state, playback_state: self.state,
capacity: 0, capacity: 0,
lack: "lack".to_string() lack: "lack".to_string(),
} }
} }
fn draw(&mut self, fn draw(&mut self, line: Vec<Point>, speed: u32) -> LJResult<()> {
line: Vec<Point>, debug!("Draw Line at speed {speed} : {:?}", line);
speed: u32, Ok(())
) -> LJResult<()> { }
debug!("Draw Line at speed {speed} : {:?}", line);
Ok(())
}
fn stop(&mut self) -> LJResult<()> { fn stop(&mut self) -> LJResult<()> {
Ok(()) Ok(())
} }
fn grid(&mut self) -> Vec<Point> { fn grid(&mut self) -> Vec<Point> {
vec!( vec![Point {
Point{ x: 0 as f32, y: 0 as f32, color:Color{ r: 0, g: 0, b: 0 }} x: 0 as f32,
) y: 0 as f32,
} color: Color { r: 0, g: 0, b: 0 },
}]
}
} }

View File

@ -1,308 +1,155 @@
#[warn(unused_imports)] use ether_dream::dac::stream::connect;
use log::{ debug, info, warn}; use ether_dream::dac::Stream;
use std::net::SocketAddr; use std::net::SocketAddr;
use std::thread::sleep;
use ether_dream::dac::stream::{CommunicationError, connect};
use ether_dream::dac::{Playback, Stream};
use chrono::{DateTime, Utc};
use std::time; use std::time;
use std::time::{Duration, SystemTime};
use crate::conf::EtherDreamConf; use crate::conf::EtherDreamConf;
use crate::device::{Device, Status, PlaybackState}; use crate::device::{Device, PlaybackState, Status};
use crate::errors::{LJError, LJResult}; use crate::errors::{LJError, LJResult};
use crate::point::{Color, Point}; use crate::point::{Color, Point};
use ether_dream::protocol::{DacBroadcast, DacResponse}; use ether_dream::protocol::{DacBroadcast, DacStatus};
use log::{info, warn};
#[warn(dead_code)] #[warn(dead_code)]
pub struct EtherdreamDevice { pub struct EtherdreamDevice {
pub conf: EtherDreamConf, pub conf: EtherDreamConf,
dac: DacBroadcast, dac: DacBroadcast,
stream: Stream, // source_address: SocketAddr,
stream: Stream,
// "a": ACK "F": Full "I": invalid. 64 or 35 for no connection. // sent_points: u16,
// /// The previous command was accepted. lack: String,
// pub const ACK: u8 = 0x61; last_traced_at: String,
// /// The write command could not be performed because there was not enough buffer space when it
// /// was received.
// pub const NAK_FULL: u8 = 0x46;
// /// The command contained an invalid `command` byte or parameters.
// pub const NAK_INVALID: u8 = 0x49;
// /// An emergency-stop condition still exists.
// pub const NAK_STOP_CONDITION: u8 = 0x21;
// }
dac_response: u8,
} }
impl EtherdreamDevice { impl EtherdreamDevice {
pub fn new(conf: &EtherDreamConf) -> LJResult<Self> { pub fn new(conf: &EtherDreamConf) -> LJResult<Self> {
let (dac, _source_address, stream) = EtherdreamDevice::connect(conf)?; let (dac, _source_address, stream) = EtherdreamDevice::get_dac(conf)?;
Ok(Self { // let (dac, source_address) = EtherdreamDevice::get_dac(conf)?;
conf: (*conf).clone(), Ok(Self {
dac, conf: (*conf).clone(),
stream, dac,
dac_response: DacResponse::ACK, // source_address,
}) stream,
} // sent_points: 0,
fn connect(conf: &EtherDreamConf) -> LJResult<(DacBroadcast, SocketAddr, Stream)> { lack: "".to_string(),
let ip = &conf.ip; last_traced_at: "1985-04-12T23:20:50.52Z".to_string(),
let dac_broadcast = ether_dream::recv_dac_broadcasts()?; })
dac_broadcast.set_timeout(Some(time::Duration::new(10, 0)))?; }
info!("Attempting to get DAC broadcast..."); pub fn get_dac(conf: &EtherDreamConf) -> LJResult<(DacBroadcast, SocketAddr, Stream)> {
let broadcast = dac_broadcast let ip = &conf.ip;
.take(3) let dac_broadcast = ether_dream::recv_dac_broadcasts()?;
.filter_map(|result| { dac_broadcast.set_timeout(Some(time::Duration::new(10, 0)))?;
match result { info!("Attempting to get DAC broadcast...");
Err(err) => { let broadcast = dac_broadcast
warn!( "Failed to find a valid DAC via broadcast. Error: {:?}", err); .filter_map(|result| match result {
info!( "Retrying..."); Err(err) => {
None warn!("Failed to find a valid DAC via broadcast. Error: {:?}", err);
} info!("Retrying...");
Ok((dac, source_addr)) => { None
info!("Valid broadcast, source_addr: {}", source_addr); }
if source_addr.is_ipv6() { Ok((dac, source_addr)) => {
warn!("Broadcast ignored: ipv6 address."); if source_addr.is_ipv6() {
return None; return None;
} }
let src_ip = source_addr.ip().to_string(); if &source_addr.ip().to_string() != ip {
if &src_ip != ip { return None;
warn!("Broadcast ignored: expected {ip}, got: {src_ip} "); }
return None; info!("Valid broadcast");
} Some(Ok((dac, source_addr)))
Some(Ok((dac, source_addr))) }
} })
} .next()
}) .expect("Failed to receive broadcast.");
.next() match broadcast {
.expect("Failed to receive broadcast."); Err(err) => Err(Box::new(LJError::EtherdreamConnectError(err))),
match broadcast { Ok((dac, source_addr)) => {
Err(err) => { let stream = EtherdreamDevice::get_tcp_stream(&dac, &source_addr)?;
Err(Box::new(LJError::EtherdreamConnectError(err))) Ok((dac, source_addr, stream))
} }
Ok((dac, source_addr)) => { }
info!("Trying to open TCP stream..."); }
let stream = EtherdreamDevice::get_tcp_stream(&dac, &source_addr)?;
info!("Finished configuring DAC and TCP stream.");
Ok((dac, source_addr, stream))
}
}
}
fn get_tcp_stream(dac: &DacBroadcast, source_address: &SocketAddr) -> LJResult<Stream> { pub fn get_tcp_stream(dac: &DacBroadcast, source_address: &SocketAddr) -> LJResult<Stream> {
let mut stream = connect(dac, source_address.ip())?; // Establish the TCP connection.
match stream let mut stream = connect(dac, source_address.ip())?;
.queue_commands()
.prepare_stream()
.submit() {
Err(err) => warn!("err occurred when submitting PREPARE_STREAM command and listening for response: {}",err),
Ok(_) => info!("Prepared Stream.")
}
// If we want to create an animation (in our case a moving sine wave) we need a frame rate.
let frames_per_second = 60.0;
// Lets use the DAC at an eighth the maximum scan rate.
let points_per_second = stream.dac().max_point_rate / 32;
// Determine the number of points per frame given our target frame and point rates.
let points_per_frame = (points_per_second as f32 / frames_per_second) as u16;
let mut sine_wave = SineWave { // Prepare stream
point: 0, stream
points_per_frame, .queue_commands()
frames_per_second, .prepare_stream()
}; .submit()
.err()
.map(|err| {
eprintln!(
"err occurred when submitting PREPARE_STREAM \
command and listening for response: {}",
err
);
});
match stream Ok(stream)
.queue_commands() }
.data(sine_wave.by_ref().take(400))
// .data(begin_list.into_iter().take(400 as usize))
.begin(0, points_per_second)
.submit() {
Err(err) => warn!("err occurred when submitting first data: {}",err),
Ok(_) => info!("Sent first data to Etherdream.")
}
Ok(stream) pub fn check_tcp_stream(&mut self) -> LJResult<()> {
} // todo Reinit stream if needed
// self.stream = EtherdreamDevice::get_tcp_stream(&self.dac, &self.source_address)?
Ok(())
}
fn points_capacity(&self) -> usize { // Determine the number of points needed to fill the DAC.
/*** fn points_to_generate(&self) -> usize {
Determine the number of points needed to fill the DAC. self.dac.buffer_capacity as usize - 1 - self.dac.dac_status.buffer_fullness as usize
***/ }
// Fixme thread 'main' panicked at 'attempt to subtract with overflow', src/device/etherdream.rs:144:24
let n_points = self.dac.buffer_capacity as usize - self.stream.dac().dac.status.buffer_fullness as usize - 1;
n_points
}
fn ping(&mut self) -> LJResult<()> {
Ok(self.stream.queue_commands().ping().submit()?)
}
} }
impl Device for EtherdreamDevice { impl Device for EtherdreamDevice {
fn status(&mut self) -> Status { fn status(&mut self) -> Status {
let playback_state = match self.stream.dac().dac.status.playback { let _ = self.check_tcp_stream();
Playback::Idle => PlaybackState::IDLE,
Playback::Prepared => PlaybackState::PREPARE,
Playback::Playing => PlaybackState::PLAYING,
};
let now = SystemTime::now();
let now: DateTime<Utc> = now.into();
let now = now.to_rfc3339();
Status { // "a": ACK "F": Full "I": invalid. 64 or 35 for no connection.
last_traced_at: now, let playback_state = match self.dac.dac_status.playback_state {
properties: vec!["foo".to_string()], DacStatus::PLAYBACK_IDLE => PlaybackState::IDLE,
playback_state, DacStatus::PLAYBACK_PREPARED => PlaybackState::PREPARE,
capacity: self.points_capacity(), DacStatus::PLAYBACK_PLAYING => PlaybackState::PLAYING,
lack: self.dac_response.to_string(), _ => PlaybackState::UNKNOWN,
} };
// debug!("Dac Status: {:?} ", status );
// debug!("Etherdream Dac {:?} ", self.dac );
// debug!("Stream dac{:?}", self.stream.dac());
// status
}
fn draw(&mut self, Status {
line: Vec<Point>, last_traced_at: self.last_traced_at.clone(),
_speed: u32, properties: vec!["foo".to_string()],
) -> LJResult<()> { playback_state,
let chunk_size = 64; capacity: self.dac.dac_status.buffer_fullness,
let points_iter = line.into_iter(); lack: String::from(&self.lack),
for chunk in points_iter.as_slice().chunks(chunk_size){ }
debug!("New chunk length: {:?}", chunk.len()); }
loop {
let capacity = self.points_capacity();
if chunk.len() > capacity {
debug!("Sleep, capacity : {:?}", capacity);
// Sleep for 1/100th of a sec
sleep(Duration::new( 0, 10000000));
self.ping()?;
} else {
break;
}
}
debug!("drawing");
match self.stream
.queue_commands()
.data(
chunk.iter()
.map(|point| (*point).into())
.take(chunk_size)
)
.submit() {
Err(err) => {
// We should account for
// 'Broken pipe (os error 32)'
// Connection reset by peer (os error 104)
self.dac_response = match err {
CommunicationError::Io(err) => {
warn!("IO ERROR while drawing: '{}'",err);
DacResponse::ACK
}
CommunicationError::Protocol(err) => {
warn!("Protocol ERROR while drawing: '{}'",err);
DacResponse::ACK
}
CommunicationError::Response(err) => {
warn!("Response ERROR while drawing: '{}'",err);
err.response.response
}
};
}
Ok(_) => {
self.dac_response = DacResponse::ACK;
// debug!("Draw is ok");
}
};
}
Ok(())
}
fn stop(&mut self) -> LJResult<()> { fn draw(&mut self, line: Vec<Point>, _speed: u32) -> LJResult<()> {
info!("Stopping Etherdream device..."); let n_points = self.points_to_generate();
match self.stream self.stream
.queue_commands() .queue_commands()
.stop() .data(line.into_iter().map(|point| point.into()).take(n_points))
.submit() .submit()?;
{ Ok(())
Err(err) => { }
warn!("Failed to stop EtherDream device with error {:?}", err);
Err(Box::new(err))
}
Ok(_) => {
info!("Sucessfully closed EtherDream device.");
Ok(())
}
}
}
fn grid(&mut self) -> Vec<Point> { fn stop(&mut self) -> LJResult<()> {
let dim_mid = 16000.0; self.stream
let dim_max = 32000.0; .queue_commands()
let col_min = Color { r: 0, g: 0, b: 0 }; .stop()
let col_max = Color { r: 255, g: 255, b: 255 }; .submit()
.expect("err occurred when submitting STOP command and listening for response");
Ok(())
}
vec![ fn grid(&mut self) -> Vec<Point> {
Point { x: -dim_max, y: dim_max, color: col_min }, vec![Point {
Point { x: -dim_max, y: dim_max, color: col_max }, x: 0.0,
Point { x: dim_max, y: dim_max, color: col_max }, y: 0.0,
Point { x: dim_max, y: -dim_max, color: col_max }, color: Color {
Point { x: -dim_max, y: -dim_max, color: col_max }, r: 255,
Point { x: -dim_max, y: -dim_mid, color: col_min }, g: 255,
Point { x: -dim_mid, y: dim_mid, color: col_min }, b: 255,
Point { x: -dim_mid, y: dim_mid, color: col_max }, },
Point { x: dim_mid, y: dim_mid, color: col_max }, }]
Point { x: dim_mid, y: -dim_mid, color: col_max }, }
Point { x: -dim_mid, y: -dim_mid, color: col_max },
Point { x: -dim_mid, y: -dim_mid, color: col_min },
]
}
}
// An iterator that endlessly generates a sine wave of DAC points.
//
// The sine wave oscillates at a rate of once per second.
struct SineWave {
point: u32,
points_per_frame: u16,
frames_per_second: f32,
}
impl Iterator for SineWave {
type Item = ether_dream::protocol::DacPoint;
fn next(&mut self) -> Option<Self::Item> {
let coloured_points_per_frame = self.points_per_frame - 1;
let i = (self.point % self.points_per_frame as u32) as u16;
let hz = 1.0;
let fract = i as f32 / coloured_points_per_frame as f32;
let phase = (self.point as f32 / coloured_points_per_frame as f32) / self.frames_per_second;
let amp = (hz * (fract + phase) * 2.0 * std::f32::consts::PI).sin();
let (r, g, b) = match i {
i if i == coloured_points_per_frame || i < 13 => (0, 0, 0),
_ => (u16::MAX, u16::MAX, u16::MAX),
};
let x_min = i16::MIN;
let x_max = i16::MAX;
let x = (x_min as f32 + fract * (x_max as f32 - x_min as f32)) as i16;
let y = (amp * x_max as f32) as i16;
let control = 0;
let (u1, u2) = (0, 0);
let p = ether_dream::protocol::DacPoint {
control,
x,
y,
i,
r,
g,
b,
u1,
u2,
};
// debug!("{:?}",p);
self.point += 1;
Some(p)
}
} }

View File

@ -1,108 +1,152 @@
use std::time::SystemTime; use crate::conf::HeliosConf;
use crate::device::{Device, PlaybackState, Status};
use crate::errors::{LJError, LJResult};
use crate::point::{Color, Point};
use chrono::Utc;
use helios_dac::{
// Coordinate,
// Color,
DeviceStatus,
Frame,
// Point as HeliosPoint,
};
/// ///
/// Configure udev: /// Configure udev:
/// https://github.com/Grix/helios_dac/blob/master/docs/udev_rules_for_linux.md /// https://github.com/Grix/helios_dac/blob/master/docs/udev_rules_for_linux.md
/// ///
use helios_dac::{NativeHeliosDac, NativeHeliosDacController}; use helios_dac::{NativeHeliosDac, NativeHeliosDacController};
use helios_dac::{
// Coordinate,
// Color,
DeviceStatus,
Frame,
// Point as HeliosPoint,
};
use crate::conf::HeliosConf;
use crate::device::{Device, Status, PlaybackState};
use crate::errors::{LJError, LJResult};
use crate::point::{Color, Point};
use chrono::{DateTime, Utc};
pub struct HeliosDevice { pub struct HeliosDevice {
pub conf: HeliosConf, pub conf: HeliosConf,
dac: NativeHeliosDac, dac: NativeHeliosDac,
sent_points: u16, sent_points: u16,
state: PlaybackState, state: PlaybackState,
lack: String, lack: String,
last_traced_at: String, last_traced_at: String,
} }
impl HeliosDevice { impl HeliosDevice {
pub fn new(conf: &HeliosConf) -> LJResult<Self> { pub fn new(conf: &HeliosConf) -> LJResult<Self> {
let id = conf.id; let id = conf.id;
let controller = NativeHeliosDacController::new()?; let controller = NativeHeliosDacController::new()?;
let devices = controller.list_devices()?; let devices = controller.list_devices()?;
let Some(device) = devices.into_iter().nth(id as usize) else { let Some(device) = devices.into_iter().nth(id as usize) else {
return Err(Box::new(LJError::HeliosDeviceMissing)); return Err(Box::new(LJError::HeliosDeviceMissing));
}; };
let dac = device.open()?; let dac = device.open()?;
let now = SystemTime::now(); Ok(Self {
let now: DateTime<Utc> = now.into(); conf: (*conf).clone(),
let last_traced_at = now.to_rfc3339(); dac,
sent_points: 0,
Ok(Self { state: PlaybackState::PREPARE,
conf: (*conf).clone(), lack: "".to_string(),
dac, last_traced_at: "1985-04-12T23:20:50.52Z".to_string(),
sent_points: 0, })
state: PlaybackState::PREPARE, }
lack: "".to_string(),
last_traced_at,
})
}
} }
impl Device for HeliosDevice { impl Device for HeliosDevice {
fn status(&mut self) -> Status { fn status(&mut self) -> Status {
let lack = self.lack.clone(); let lack = self.lack.clone();
Status { Status {
last_traced_at: self.last_traced_at.clone(), last_traced_at: self.last_traced_at.clone(),
properties: vec!["foo".to_string()], properties: vec!["foo".to_string()],
playback_state: self.state, playback_state: self.state,
capacity: self.sent_points as usize, capacity: self.sent_points,
lack, lack,
} }
} }
fn draw(&mut self, fn draw(&mut self, line: Vec<Point>, speed: u32) -> LJResult<()> {
line: Vec<Point>, self.state = PlaybackState::IDLE;
speed: u32, while let Ok(DeviceStatus::NotReady) = self.dac.status() {}
) -> LJResult<()> { self.state = PlaybackState::PLAYING;
self.state = PlaybackState::IDLE;
while let Ok(DeviceStatus::NotReady) = self.dac.status() {}
self.state = PlaybackState::PLAYING;
let points: Vec<helios_dac::Point> = line.into_iter().map(|p| p.into()).collect(); let points: Vec<helios_dac::Point> = line.into_iter().map(|p| p.into()).collect();
let frame = Frame::new(speed, points.clone()); let frame = Frame::new(speed, points.clone());
self.dac.write_frame(frame.clone())?; self.dac.write_frame(frame.clone())?;
self.sent_points = points.len() as u16; self.sent_points = points.len() as u16;
self.last_traced_at = Utc::now().to_rfc3339(); self.last_traced_at = Utc::now().to_rfc3339();
Ok(()) Ok(())
} }
fn stop(&mut self) -> LJResult<()> { fn stop(&mut self) -> LJResult<()> {
self.dac.stop()?; self.dac.stop()?;
Ok(()) Ok(())
} }
fn grid(&mut self) -> Vec<Point> { fn grid(&mut self) -> Vec<Point> {
let dim_min = 0 as f32; let dim_min = 0 as f32;
let dim_mid = 2047.0; let dim_mid = 2047 as f32;
let dim_max = 4095.0; let dim_max = 4095 as f32;
let col_min = Color { r: 0, g: 0, b: 0 }; let col_min = Color { r: 0, g: 0, b: 0 };
let col_max = Color { r: 255, g: 255, b: 255 }; let col_max = Color {
r: 255,
g: 255,
b: 255,
};
vec![ vec![
Point { x: dim_min, y: dim_max, color: col_min }, Point {
Point { x: dim_min, y: dim_max, color: col_max }, x: dim_min,
Point { x: dim_max, y: dim_max, color: col_max }, y: dim_max,
Point { x: dim_max, y: dim_min, color: col_max }, color: col_min,
Point { x: dim_min, y: dim_min, color: col_max }, },
Point { x: dim_min, y: dim_min, color: col_min }, Point {
Point { x: dim_min, y: dim_mid, color: col_min }, x: dim_min,
Point { x: dim_min, y: dim_mid, color: col_max }, y: dim_max,
Point { x: dim_mid, y: dim_mid, color: col_max }, color: col_max,
Point { x: dim_mid, y: dim_min, color: col_max }, },
Point { x: dim_min, y: dim_min, color: col_max }, Point {
Point { x: dim_min, y: dim_min, color: col_min }, x: dim_max,
] y: dim_max,
} color: col_max,
},
Point {
x: dim_max,
y: dim_min,
color: col_max,
},
Point {
x: dim_min,
y: dim_min,
color: col_max,
},
Point {
x: dim_min,
y: dim_min,
color: col_min,
},
Point {
x: dim_min,
y: dim_mid,
color: col_min,
},
Point {
x: dim_min,
y: dim_mid,
color: col_max,
},
Point {
x: dim_mid,
y: dim_mid,
color: col_max,
},
Point {
x: dim_mid,
y: dim_min,
color: col_max,
},
Point {
x: dim_min,
y: dim_min,
color: col_max,
},
Point {
x: dim_min,
y: dim_min,
color: col_min,
},
]
}
} }

View File

@ -1,50 +1,50 @@
use config::ConfigError;
use redis::RedisError;
use std::error::Error; use std::error::Error;
use std::{fmt, io}; use std::{fmt, io};
use redis::RedisError;
use config::ConfigError;
pub type LJResult<T> = Result<T, Box<dyn std::error::Error>>; pub type LJResult<T> = Result<T, Box<dyn std::error::Error>>;
#[derive(Debug)] #[derive(Debug)]
pub enum LJError { pub enum LJError {
Config(ConfigError), Config(ConfigError),
RedisConnect(RedisError), RedisConnect(RedisError),
HeliosDeviceMissing, HeliosDeviceMissing,
BadEDH, BadEDH,
EtherdreamConnectError(io::Error), EtherdreamConnectError(io::Error),
} }
impl fmt::Display for LJError { impl fmt::Display for LJError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
use LJError::*; use LJError::*;
match self { match self {
Config(err) => { Config(err) => {
write!(f, "unable to load config file: {err}") write!(f, "unable to load config file: {err}")
} }
RedisConnect(err) => { RedisConnect(err) => {
write!(f, "unable to connect to redis server: {err}") write!(f, "unable to connect to redis server: {err}")
} }
HeliosDeviceMissing => { HeliosDeviceMissing => {
write!(f, "helios device not found") write!(f, "helios device not found")
} }
BadEDH => { BadEDH => {
write!(f, "EDH matrix is not a 3x3 matrix") write!(f, "EDH matrix is not a 3x3 matrix")
} }
EtherdreamConnectError(err) => { EtherdreamConnectError(err) => {
write!(f, "Failed to retrieve Etherdream device: {err}") write!(f, "Failed to retrieve Etherdream device: {err}")
} }
} }
} }
} }
impl Error for LJError { impl Error for LJError {
fn source(&self) -> Option<&(dyn Error + 'static)> { fn source(&self) -> Option<&(dyn Error + 'static)> {
use LJError::*; use LJError::*;
match self { match self {
RedisConnect(err) => Some(err), RedisConnect(err) => Some(err),
_ => None _ => None,
} }
} }
} }

View File

@ -1,39 +0,0 @@
use log::{debug, warn};
use std::time::{Duration, Instant};
use crate::errors::LJResult;
use std::{thread};
/// Converts helios Geometry to Helios
#[derive(Debug, Clone, Copy)]
pub struct Framerate {
prev_trace_time: Instant,
fps: u8,
}
impl Framerate {
pub fn new() -> LJResult<Self> {
Ok(Framerate {
prev_trace_time: Instant::now(),
fps: 20,
})
}
pub fn handle_time(&mut self) -> LJResult<()> {
let frame_time = 1000000000 / self.fps as u128;
let now = Instant::now();
// How long since last loop ?
let nanotime_spent = self.prev_trace_time.elapsed().as_nanos();
// Diw it go too fast? If so : sleep a bit
if frame_time > nanotime_spent {
let nanotime_towait = frame_time - nanotime_spent;
let dur = Duration::new(0, (nanotime_towait as f32 * 0.9) as u32);
// debug!("{:?} - {:?} : {:?}", nanotime_towait, self.prev_trace_time, now );
thread::sleep(dur);
debug!("Framerate OK");
} else {
warn!("Frame longer than expected {:?} > {:?}", nanotime_spent, frame_time, );
}
self.prev_trace_time = now;
Ok(())
}
}

View File

@ -1,8 +1,7 @@
pub mod redis_ctrl;
pub mod conf; pub mod conf;
pub mod errors;
pub mod device; pub mod device;
pub mod errors;
pub mod point; pub mod point;
pub mod redis_ctrl;
pub mod transformer; pub mod transformer;
pub mod worldstate; pub mod worldstate;
pub mod framerate;

View File

@ -1,200 +1,179 @@
mod conf;
mod device;
mod errors;
mod point;
/// ///
/// Configure udev: /// Configure udev:
/// https://github.com/Grix/helios_dac/blob/master/docs/udev_rules_for_linux.md /// https://github.com/Grix/helios_dac/blob/master/docs/udev_rules_for_linux.md
/// ///
mod redis_ctrl; mod redis_ctrl;
mod conf;
mod errors;
mod point;
mod transformer; mod transformer;
mod device;
mod worldstate; mod worldstate;
mod framerate;
use conf::Conf;
use device::device_factory; use device::device_factory;
use env_logger::Builder;
use errors::LJResult;
use log::{/* warn, */ error, info, LevelFilter};
use point::{Color, Point};
use redis_ctrl::{Order, RedisCtrl};
use std::sync::atomic::{AtomicBool, Ordering}; use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::Arc; use std::sync::Arc;
use redis_ctrl::{RedisCtrl, Order};
use conf::Conf;
use errors::LJResult;
use point::{Point, Color};
use transformer::Transformers; use transformer::Transformers;
use log::{LevelFilter, info, /* warn, */ error};
use env_logger::Builder;
use worldstate::WorldState; use worldstate::WorldState;
use framerate::Framerate;
const DEFAULT_CONF_FILE: &str = "settings.toml"; const DEFAULT_CONF_FILE: &str = "settings.toml";
pub fn main() { pub fn main() {
match run_all() { match run_all() {
Ok(()) => {} Ok(()) => {}
Err(err) => { Err(err) => {
error!("Error: {}", err); error!("Error: {}", err);
} }
} }
} }
fn run_all() -> LJResult<()> { fn run_all() -> LJResult<()> {
// Setup handler for interrupt Signals // Setup configuration file and set up logs
let running = Arc::new(AtomicBool::new(true)); let filename = std::env::args()
let r = running.clone(); .nth(1)
ctrlc::set_handler(move || { .unwrap_or_else(|| DEFAULT_CONF_FILE.to_string());
r.store(false, Ordering::SeqCst);
})?;
// Setup configuration file and set up logs let config = Conf::new(&filename);
let filename = std::env::args().nth(1).unwrap_or_else(|| { init_logging(&config);
DEFAULT_CONF_FILE.to_string() let config = config?;
}); info!("*** Starting up ***");
let config = Conf::new(&filename); info!("{:?}", config);
init_logging(&config);
let config = config?;
info!("*** Starting up ***");
info!("{:?}", config); // Setup Redis Service
let mut rs = RedisCtrl::new(&config.redis_url, &config.laser_id)?;
// Setup Redis Service let mut world_state = rs.init_world_state().unwrap();
let mut rs = RedisCtrl::new(&config.redis_url, &config.laser_id)?; info!("WorldState: {:?}", world_state);
dbg!("worldstate.kpps: {}", world_state.kpps);
let mut world_state = rs.init_world_state().unwrap(); // Setup handler for interrupt Signals
info!("WorldState: {:?}", world_state); let running = Arc::new(AtomicBool::new(true));
let r = running.clone();
ctrlc::set_handler(move || {
r.store(false, Ordering::SeqCst);
})?;
// Setup Laser Device based on conf
let mut tracer = device_factory(&config)?;
world_state.grid = tracer.grid();
// Setup Laser Device based on conf // can't work, but we can add + Debug to Device to make it work...
let mut tracer = device_factory(&config)?; //dbg!(tracer);
world_state.grid = tracer.grid();
// Setup geometry transformers on points lists // Setup geometry transformers on points lists
let transformers = config.get_transformers(); let transformers = config.get_transformers();
// Setup framerate limiter // Dispatch based on redis requests
let mut framerate_handler = Framerate::new()?; while running.load(Ordering::SeqCst) {
rs.set_status(tracer.status())?;
// Dispatch based on redis requests let order = rs.get_order(config.laser_id)?;
while running.load(Ordering::SeqCst) {
rs.set_status(tracer.status())?;
framerate_handler.handle_time()?;
let order = rs.get_order(config.laser_id)?;
match order {
Order::Draw | Order::Black | Order::Grid => {
// 0 : Draw Normal point list
// 2 : Draw BLACK point list
// 3 : Draw GRID point list
world_state.draw_black = order == Order::Black;
world_state.draw_grid = order == Order::Grid;
let frame = get_next_frame(
&config,
&transformers,
&mut rs,
&world_state,
)?;
// For now, draw all the time
tracer.draw(frame, world_state.kpps)?;
}
Order::Intensity => {
// 6 : Max Intensity Change = reread redis key /intensity
world_state.intensity = rs.get_int("intensity")?
.try_into()?;
}
Order::Edh => {
// 1 : Get the new EDH = reread redis key /EDH/lasernumber
world_state.edh = rs.get_edh()?;
}
Order::Kpps => {
// 7 : kpps change = reread redis key /kpps
world_state.kpps = rs.get_int("kpps")?;
}
Order::ClientKey => {
world_state.client_key = rs.get_client_key()?;
}
Order::ColorBalance => {
let (r, g, b) = rs.get_color_balance()?;
world_state.color_balance = Color { r, g, b };
}
Order::Resampler => {
world_state.resampler = rs.get_resampler()?;
}
_ => {
// 9 : poweroff LJ
info!("Order: {:?}", order);
}
}
}
info!("Exiting, stoping device."); match order {
tracer.stop()?; Order::Draw | Order::Black | Order::Grid => {
Ok(()) // 0 : Draw Normal point list
// 2 : Draw BLACK point list
// 3 : Draw GRID point list
world_state.draw_black = order == Order::Black;
world_state.draw_grid = order == Order::Grid;
let frame = get_next_frame(&config, &transformers, &mut rs, &world_state)?;
// For now, draw all the time
tracer.draw(frame, world_state.kpps)?;
}
Order::Intensity => {
// 6 : Max Intensity Change = reread redis key /intensity
world_state.intensity = rs.get_int("intensity")?.try_into()?;
}
Order::Edh => {
// 1 : Get the new EDH = reread redis key /EDH/lasernumber
world_state.edh = rs.get_edh()?;
}
Order::Kpps => {
// 7 : kpps change = reread redis key /kpps
world_state.kpps = rs.get_int("kpps")?;
//dbg!(world_state.kpps);
}
Order::ClientKey => {
world_state.client_key = rs.get_client_key()?;
}
// Order::ColorBalance => {},
_ => {
// 4 : Resampler Change (longs and shorts lsteps)
// 5 : Client Key Change = reread redis key /clientkey
// 8 : color balance change = reread redis keys /red /green /blue
// 9 : poweroff LJ
info!("Order: {:?}", order);
}
}
}
info!("Exiting, stoping device.");
tracer.stop()?;
Ok(())
} }
fn init_logging(config: &LJResult<Conf>) { fn init_logging(config: &LJResult<Conf>) {
if let Ok(ref config) = config { if let Ok(ref config) = config {
let level = if config.debug { if config.debug {
LevelFilter::Debug let mut builder = Builder::from_default_env();
} else { builder.filter(None, LevelFilter::Info).init();
LevelFilter::Info info!("Debug mode enabled from configuration file");
}; return;
let mut builder = Builder::from_default_env(); }
builder }
.filter(None, level) info!("Logging level inherited from env");
.init(); env_logger::init();
info!("Debug mode enabled from configuration file");
return;
}
info!("Logging level inherited from env");
env_logger::init();
} }
fn get_next_frame( fn get_next_frame(
config: &Conf, config: &Conf,
transformers: &[Box<dyn Transformers>], transformers: &[Box<dyn Transformers>],
rs: &mut RedisCtrl, rs: &mut RedisCtrl,
world_state: &WorldState, world_state: &WorldState,
) -> LJResult<Vec<Point>> { ) -> LJResult<Vec<Point>> {
let format_key = format!("{}{}", let format_key = format!("{}{}", world_state.client_key, config.laser_id);
world_state.client_key,
config.laser_id);
// Handle the grid case // Handle the grid case
let mut line: Vec<Point> = if world_state.draw_grid { let mut line: Vec<Point> = if world_state.draw_grid {
world_state.grid.clone() world_state.grid.clone()
} else { } else {
let redis_line = rs.get_line(&format_key)?; let redis_line = rs.get_line(&format_key)?;
redis_line.into_iter() redis_line.into_iter().map(|tpl| tpl.into()).collect()
.map(|tpl| tpl.into()) };
.collect()
};
for transformer in transformers { for transformer in transformers {
line = transformer.apply(&line, world_state); line = transformer.apply(&line, world_state);
} }
// info!("Draw Black -> {}", world_state.draw_black);
// info!("Draw Grid -> {}", world_state.draw_grid);
// LIMITER and BLACK info!("Draw Black -> {}", world_state.draw_black);
line = line.into_iter() info!("Draw Grid -> {}", world_state.draw_grid);
.map(|p| {
let color = if world_state.draw_black {
Color { r: 0, g: 0, b: 0 }
} else {
Color {
r: p.color.r.min(world_state.intensity),
g: p.color.g.min(world_state.intensity),
b: p.color.b.min(world_state.intensity),
}
};
Point {
color,
..p
}
})
.collect();
//info!("Line: {:?}", line); // LIMITER and BLACK
Ok(line) line = line
.into_iter()
.map(|p| {
let color = if world_state.draw_black {
Color { r: 0, g: 0, b: 0 }
} else {
Color {
r: p.color.r.min(world_state.intensity),
g: p.color.g.min(world_state.intensity),
b: p.color.b.min(world_state.intensity),
}
};
Point { color, ..p }
})
.collect();
//info!("Line: {:?}", line);
Ok(line)
} }

View File

@ -1,81 +1,92 @@
use ether_dream::protocol::DacPoint; use ether_dream::protocol::DacPoint;
use std::ops::Mul;
#[derive(Debug, Clone, Copy, Default, PartialEq)] #[derive(Debug, Clone, Copy, Default, PartialEq)]
pub struct Point { pub struct Point {
pub x: f32, pub x: f32,
pub y: f32, pub y: f32,
pub color: Color, pub color: Color,
} }
#[derive(Debug, Clone, Copy, Default, PartialEq)] #[derive(Debug, Clone, Copy, Default, PartialEq)]
pub struct Color { pub struct Color {
pub r: u8, pub r: u8,
pub g: u8, pub g: u8,
pub b: u8, pub b: u8,
} }
impl Mul<u8> for Color {
type Output = Self;
fn mul(self, rhs: u8) -> Self { impl Point {
Self{ pub fn diff(p1: &Self, p2: &Self) -> Self {
r: (255 * self.r as u16 / rhs as u16) as u8, Point {
g: (255 * self.g as u16 / rhs as u16) as u8, x: p1.x - p2.x,
b: (255 * self.b as u16 / rhs as u16) as u8, y: p1.y - p2.y,
} color: Color { r: 0, g: 0, b: 0 },
}
}
pub fn normalize(&mut self) -> Self {
let length = (self.x * self.x + self.y * self.y).sqrt();
self.x = self.x / length;
self.y = self.y / length;
*self
}
pub fn cross(&self, pt: &Self) -> f32 {
self.x * pt.x + self.y * pt.y
} }
} }
// normalaize
// diff
impl From<Color> for u32 { impl From<Color> for u32 {
fn from(value: Color) -> Self { fn from(value: Color) -> Self {
let r = value.r as u32; let r = value.r as u32;
let g = value.g as u32; let g = value.g as u32;
let b = (value.b) as u32; let b = (value.b) as u32;
(r << 16) + (g << 8) + b (r << 16) + (g << 8) + b
} }
} }
impl From<(f32, f32, u32)> for Point { impl From<(f32, f32, u32)> for Point {
fn from((x, y, color): (f32, f32, u32)) -> Point { fn from((x, y, color): (f32, f32, u32)) -> Point {
let r = (color >> 16) as u8; let r = (color >> 16) as u8;
let g = ((color >> 8) & 255) as u8; let g = ((color >> 8) & 255) as u8;
let b = (color & 255) as u8; let b = (color & 255) as u8;
Point { x, y, color: Color { r, g, b } } Point {
} x,
y,
color: Color { r, g, b },
}
}
} }
impl From<Point> for helios_dac::Point { impl From<Point> for helios_dac::Point {
fn from(pt: Point) -> helios_dac::Point { fn from(pt: Point) -> helios_dac::Point {
let x = pt.x.clamp(0.0, 4095.0) as u16; let x = pt.x.clamp(0.0, 4095.0) as u16;
let y = pt.y.clamp(0.0, 4095.0) as u16; let y = pt.y.clamp(0.0, 4095.0) as u16;
helios_dac::Point { helios_dac::Point {
coordinate: (x, y).into(), coordinate: (x, y).into(),
color: helios_dac::Color::new(pt.color.r, pt.color.g, pt.color.b), color: helios_dac::Color::new(pt.color.r, pt.color.g, pt.color.b),
intensity: 0xFF, intensity: 0xFF,
} }
} }
} }
impl From<Point> for DacPoint { impl From<Point> for DacPoint {
fn from(pt: Point) -> DacPoint { fn from(pt: Point) -> DacPoint {
let control = 0; let control = 0;
let (u1, u2) = (0, 0); let (u1, u2) = (0, 0);
let i = 0; let i = 255;
let x = pt.x.clamp(-32000.0, 32000.0); DacPoint {
let y = pt.y.clamp(-32000.0, 32000.0); control,
let pt = DacPoint { x: pt.x as i16,
control, y: pt.y as i16,
x: x as i16, i,
y: y as i16, r: pt.color.r.into(),
i, g: pt.color.g.into(),
r: (pt.color.r as u16) * 255, b: pt.color.b.into(),
g: (pt.color.g as u16) * 255, u1,
b: (pt.color.b as u16) * 255, u2,
u1, }
u2, }
};
// debug!("point {:?}", pt);
pt
}
} }

View File

@ -1,143 +1,134 @@
use redis::{Client, Commands, Connection};
use ron::de::from_str;
use crate::device::Status; use crate::device::Status;
use crate::errors::{LJError, LJResult}; use crate::errors::{LJError, LJResult};
use crate::worldstate::{WorldState, EDH}; use crate::worldstate::{WorldState, EDH};
use redis::{Client, Commands, Connection};
use ron::de::from_str;
// use log::info; // use log::info;
#[repr(u8)] #[repr(u8)]
#[derive(Debug, PartialEq)] #[derive(Debug, PartialEq)]
pub enum Order { pub enum Order {
Draw = 0, Draw = 0,
Edh, Edh,
Black, //homography
Grid, Black,
Resampler, Grid,
ClientKey, Resampler,
Intensity, ClientKey,
Kpps, Intensity,
ColorBalance, Kpps,
PowerOff ColorBalance,
} }
impl TryFrom<u8> for Order { impl TryFrom<u8> for Order {
type Error = String; type Error = String;
fn try_from(value: u8) -> Result<Self, Self::Error> { fn try_from(value: u8) -> Result<Self, Self::Error> {
use Order::*; use Order::*;
if value > 8 { if value > 8 {
return Err("order out of range".to_string()); return Err("order out of range".to_string());
} }
Ok(match value { Ok(match value {
0 => Draw, 0 => Draw,
1 => Edh, 1 => Edh,
2 => Black, 2 => Black,
3 => Grid, 3 => Grid,
4 => Resampler, 4 => Resampler,
5 => ClientKey, 5 => ClientKey,
6 => Intensity, 6 => Intensity,
7 => Kpps, 7 => Kpps,
8 => ColorBalance, 8 => ColorBalance,
9 => PowerOff, _ => unreachable!(),
_ => unreachable!() })
}) }
}
} }
pub type Line = Vec<(f32, f32, u32)>; pub type Line = Vec<(f32, f32, u32)>;
pub type Resampler = Vec<Vec<(f32,f32)>>;
pub struct RedisCtrl { pub struct RedisCtrl {
pub client: Client, pub client: Client,
pub connection: Connection, pub connection: Connection,
laser_id: u8, laser_id: u8,
} }
impl RedisCtrl { impl RedisCtrl {
pub fn new(url: &str, laser_id: &u8) -> LJResult<Self> { pub fn new(url: &str, laser_id: &u8) -> LJResult<Self> {
let client = Client::open(url) let client = Client::open(url).map_err(LJError::RedisConnect)?;
.map_err(LJError::RedisConnect)?; let connection = client.get_connection().map_err(LJError::RedisConnect)?;
let connection = client.get_connection() Ok(RedisCtrl {
.map_err(LJError::RedisConnect)?; client,
Ok(RedisCtrl { client, connection, laser_id: *laser_id }) connection,
} laser_id: *laser_id,
})
}
pub fn get_line(&mut self, key: &str) -> LJResult<Line> { pub fn get_line(&mut self, key: &str) -> LJResult<Line> {
let val: String = self.connection.get(key)?; let val: String = self.connection.get(key)?;
let line: Line = from_str(&val)?; let line: Line = from_str(&val)?;
Ok(line) Ok(line)
} }
pub fn set(&mut self, key: String, value: String) -> LJResult<()> { pub fn set(&mut self, key: String, value: String) -> LJResult<()> {
self.connection.set(key, value)?; self.connection.set(key, value)?;
Ok(()) Ok(())
} }
pub fn get_order(&mut self, id: u8) -> LJResult<Order> { pub fn get_order(&mut self, id: u8) -> LJResult<Order> {
let path = format!("/order/{id}"); let path = format!("/order/{id}");
let val: u8 = self.connection.get(path.clone())?; let val: u8 = self.connection.get(path.clone())?;
if val == 1 || val >= 4 { if val == 1 || val >= 4 {
self.connection.set(path, 0)?; self.connection.set(path, 0)?;
} }
Ok(val.try_into()?) Ok(val.try_into()?)
} }
pub fn set_status(&mut self, status: Status) -> LJResult<()> { /**
let lstt_key = format!("/lstt/{}", self.laser_id); /lstt/lasernumber etherdream last_status.playback_state (0: idle 1: prepare 2: playing)
let cap_key = format!("/cap/{}", self.laser_id); /cap/lasernumber number of empty points sent to fill etherdream buffer (up to 1799)
let lack_key = format!("/lack/{}", self.laser_id); /lack/lasernumber "a": ACK "F": Full "I": invalid. 64 or 35 for no connection.
self.set(lstt_key, status.playback_state.to_string())?; **/
self.set(cap_key, status.capacity.to_string())?; pub fn set_status(&mut self, status: Status) -> LJResult<()> {
self.set(lack_key, status.lack.to_string())?; let lstt_key = format!("/lstt/{}", self.laser_id);
Ok(()) let cap_key = format!("/cap/{}", self.laser_id);
} let lack_key = format!("/lack/{}", self.laser_id);
self.set(lstt_key, status.playback_state.to_string())?;
self.set(cap_key, status.capacity.to_string())?;
self.set(lack_key, status.lack.to_string())?;
Ok(())
}
pub fn init_world_state(&mut self) -> LJResult<WorldState> { pub fn init_world_state(&mut self) -> LJResult<WorldState> {
Ok(WorldState { Ok(WorldState {
client_key: self.get_client_key()?, client_key: self.get_client_key().unwrap(),
edh: self.get_edh()?, edh: self.get_edh().unwrap(),
kpps: self.get_int("kpps")?.try_into()?, kpps: self.get_int("kpps").unwrap().try_into().unwrap(),
intensity: self.get_int("intensity")?.try_into()?, intensity: self.get_int("intensity").unwrap().try_into().unwrap(),
..WorldState::default() ..WorldState::default()
}) })
} }
pub fn get_edh(&mut self) -> LJResult<EDH> { pub fn get_edh(&mut self) -> LJResult<EDH> {
// Get new EDH // Get new EDH
let edh_key = format!("/EDH/{}", self.laser_id); let edh_key = format!("/EDH/{}", self.laser_id);
let edh: String = self.connection.get(edh_key)?; let edh: String = self.connection.get(edh_key)?;
let edh: Vec<Vec<f32>> = from_str(&edh)?; let edh: Vec<Vec<f32>> = from_str(&edh)?;
let edh = EDH::new(edh)?; let edh = EDH::new(edh)?;
Ok(edh) Ok(edh)
} }
pub fn get_client_key(&mut self) -> LJResult<String> { pub fn get_client_key(&mut self) -> LJResult<String> {
let key: String = self.connection.get("/clientkey")?; let key: String = self.connection.get("/clientkey")?;
Ok(key) Ok(key)
} }
pub fn get_color_balance(&mut self) -> LJResult<(u8, u8, u8)> { pub fn get_int(&mut self, key: &str) -> LJResult<u32> {
Ok(( // Get new Int
self.connection.get("/red")?, let fmt = format!("/{key}/{}", self.laser_id);
self.connection.get("/green")?, let val: u32 = self.connection.get(fmt)?;
self.connection.get("/blue")?, Ok(val)
)) }
}
pub fn get_resampler(&mut self ) -> LJResult<Resampler> {
let val: String = self.connection.get(format!("/resampler/{}", self.laser_id))?;
let resampler : Resampler = from_str(&val)?;
Ok(resampler)
}
pub fn get_int(&mut self, key: &str) -> LJResult<u32> {
// Get new Int
let fmt = format!("/{key}/{}", self.laser_id);
let val: u32 = self.connection.get(fmt)?;
Ok(val)
}
} }

View File

@ -1,9 +1,9 @@
//pub mod common;
mod angle_optimisation;
mod flip_horizontal; mod flip_horizontal;
mod flip_vertical; mod flip_vertical;
mod grid; mod grid;
mod helios_to_etherdream;
mod homography; mod homography;
mod intensity;
mod replicate; mod replicate;
mod rotate; mod rotate;
mod translate; mod translate;
@ -12,20 +12,15 @@ use crate::point::Point;
use crate::worldstate::WorldState; use crate::worldstate::WorldState;
// re-export transformers to be abe to use it directly from transformer:: // re-export transformers to be abe to use it directly from transformer::
pub use translate::Translate; pub use self::homography::Homography;
pub use replicate::Replicate; pub use angle_optimisation::AngleOptimisation;
pub use rotate::Rotate;
pub use flip_horizontal::FlipHorizontal; pub use flip_horizontal::FlipHorizontal;
pub use flip_vertical::FlipVertical; pub use flip_vertical::FlipVertical;
pub use grid::Grid; pub use grid::Grid;
pub use self::homography::Homography; pub use replicate::Replicate;
pub use helios_to_etherdream::HeliosToEtherdream; pub use rotate::Rotate;
pub use intensity::Intensity; pub use translate::Translate;
pub trait Transformers { pub trait Transformers {
fn apply( fn apply(&self, point_list: &[Point], world_state: &WorldState) -> Vec<Point>;
&self,
point_list: &[Point],
world_state: &WorldState
) -> Vec<Point>;
} }

View File

@ -0,0 +1,129 @@
use crate::point::{Color, Point};
use crate::transformer::Transformers;
use crate::worldstate::WorldState;
use serde::{Deserialize, Serialize};
use std::f64::consts::PI;
//use std::cmp::min;
/// Angle Optimisation
#[derive(Serialize, Deserialize, Debug, Clone, Copy)]
pub struct AngleOptimisation {
coef: f64,
//pps: u16,
}
fn color_not_zero(p1: &Point, p2: &Point, p3: &Point) -> bool {
let c0 = Color { r: 0, g: 0, b: 0 };
if p1.color == c0 || p2.color == c0 || p3.color == c0 {
false
} else {
true
}
}
fn pos_different(p1: &Point, p2: &Point) -> bool {
if p1.x == p2.x && p1.y == p2.y {
false
} else {
true
}
}
/*
* Le temps a attendre a un angle est toujours le meme, peu importe les kpps.
* Donc le nombre de point a rajouter est proportionelle a la vitesse du laser.
*
* kpps /
* */
fn color_same(p1: &Point, p2: &Point) -> bool {
if p1.color.r == p2.color.r && p1.color.g == p2.color.g && p1.color.b == p2.color.b {
true
} else {
false
}
}
// quand on rajoute un point, on le rejoute ou et avec quelle couleur
// -> j'ai l'impression qu'on le rajoute surtout a l'arriver
fn get_prev(pl: &[Point], id: usize) -> (Option<&Point>, usize) {
for i in (0..id).rev() {
if pos_different(&pl[id], &pl[i]) {
return (Some(&pl[i]), id - i);
}
}
(None, id - 0)
}
fn get_next(pl: &[Point], id: usize) -> (Option<&Point>, usize) {
for i in id..(pl.len() - 1) {
if pos_different(&pl[id], &pl[i]) {
return (Some(&pl[i]), i - id);
}
}
(None, pl.len() - id - 1)
}
fn max(v1: f64, v2: f64) -> f64 {
if v1 > v2 {
v1
} else {
v2
}
}
impl Transformers for AngleOptimisation {
fn apply(&self, pl: &[Point], _ws: &WorldState) -> Vec<Point> {
let c0 = Color { r: 0, g: 0, b: 0 };
let mut v = vec![];
let to_add_max = _ws.kpps as f64 / self.coef; // for 180 deg
let to_add_min = max(to_add_max / 1.5, 2.); // for 180 deg
let mut first_blanc = pl[0].clone();
first_blanc.color = Color{r:0, g:0, b:0};
for _ in 0..(to_add_max as u32) {
v.push(first_blanc); // push first
}
v.push(pl[0]);
for i in 1..(pl.len() - 1) {
let node = &pl[i];
if let ((Some(prev), dist_prev), (Some(next), dist_next)) =
(get_prev(pl, i), get_next(pl, i))
{
let d1 = Point::diff(node, prev).normalize();
let d2 = Point::diff(next, node).normalize();
let angle = (d1.cross(&d2) as f64).acos();
let to_add = ((to_add_max - to_add_min) * (angle / PI) + to_add_min) as usize;
println!("\nangle: {}", (angle / PI * 180.));
dbg!(to_add);
dbg!(to_add_max);
for _ in 0..to_add {
v.push(*node);
}
} else {
v.push(*node);
};
//v.push(*node); // push node
}
for _ in 0..(to_add_max as u32) {
v.push(pl[pl.len() - 2]); // push last
}
for _ in 0..(to_add_max as u32) {
v.push(pl[pl.len() - 1]); // push last
}
println!("\tbefore: {}\tafter: {}", pl.len(), v.len());
v
}
}
/*
* |\
* | \
* | \
* | |
* */

View File

@ -1,24 +1,27 @@
use crate::transformer::Transformers;
use crate::point::Point; use crate::point::Point;
use crate::transformer::Transformers;
use crate::worldstate::WorldState; use crate::worldstate::WorldState;
use serde::{Serialize,Deserialize}; use serde::{Deserialize, Serialize};
/// Flip Horizontal /// Flip Horizontal
#[derive(Serialize,Deserialize,Debug,Clone,Copy)] #[derive(Serialize, Deserialize, Debug, Clone, Copy)]
pub struct FlipHorizontal { pub struct FlipHorizontal {
x: f32, x: f32,
} }
impl Transformers for FlipHorizontal { impl Transformers for FlipHorizontal {
fn apply(&self, point_list: &[Point], _ws: &WorldState) -> Vec<Point> { fn apply(&self, point_list: &[Point], _ws: &WorldState) -> Vec<Point> {
point_list.iter() point_list
.map(| pt | { .iter()
let dx = pt.x - self.x; .map(|pt| {
Point { x: dx - 2. * dx, let dx = pt.x - self.x;
..*pt Point {
} x: dx - 2. * dx,
}).collect() ..*pt
}
})
.collect()
} }
} }

View File

@ -1,24 +1,27 @@
use crate::transformer::Transformers;
use crate::point::Point; use crate::point::Point;
use crate::transformer::Transformers;
use crate::worldstate::WorldState; use crate::worldstate::WorldState;
use serde::{Serialize,Deserialize}; use serde::{Deserialize, Serialize};
/// Flip Vertical /// Flip Vertical
#[derive(Serialize,Deserialize,Debug,Clone,Copy)] #[derive(Serialize, Deserialize, Debug, Clone, Copy)]
pub struct FlipVertical { pub struct FlipVertical {
y: f32, y: f32,
} }
impl Transformers for FlipVertical { impl Transformers for FlipVertical {
fn apply(&self, point_list: &[Point], _ws: &WorldState) -> Vec<Point> { fn apply(&self, point_list: &[Point], _ws: &WorldState) -> Vec<Point> {
point_list.iter() point_list
.map(| pt | { .iter()
let dy = pt.y - self.y; .map(|pt| {
Point { y: dy - 2. * dy, let dy = pt.y - self.y;
..*pt Point {
} y: dy - 2. * dy,
}).collect() ..*pt
}
})
.collect()
} }
} }

View File

@ -1,58 +1,48 @@
use crate::transformer::Transformers;
use crate::point::Point; use crate::point::Point;
use crate::transformer::Transformers;
use crate::worldstate::WorldState; use crate::worldstate::WorldState;
use serde::{Serialize,Deserialize}; use serde::{Deserialize, Serialize};
/// Translate /// Translate
#[derive(Serialize,Deserialize,Debug,Clone,Copy)] #[derive(Serialize, Deserialize, Debug, Clone, Copy)]
pub struct Grid { pub struct Grid {
width: f32, width: f32,
height: f32 height: f32,
} }
fn square_box(size: f32, color: u32) -> Vec<(f32, f32, u32)> { fn square_box(size: f32, color: u32) -> Vec<(f32, f32, u32)> {
vec![ vec![
(-size, -size, 0), (-size, -size, 0),
(-size, -size, color), (-size, -size, color),
(0.0, -size, color),
(0.0, -size, color), (0.0, -size, color),
(0.0, -size, color), (size, -size, color),
(size, -size, color),
(size, -size, color), (size, 0.0, color),
(size, -size, color), (size, 0.0, color),
(size, size, color),
(size, 0.0, color), (size, size, color),
(size, 0.0, color), (0.0, size, color),
(0.0, size, color),
(size, size, color), (-size, size, color),
(size, size, color), (-size, size, color),
(-size, 0.0, color),
(0.0, size, color), (-size, 0.0, color),
(0.0, size, color), (-size, -size, color),
(-size, -size, color),
(-size, size, color), (-size, -size, 0),
(-size, size, color),
(-size, 0.0, color),
(-size, 0.0, color),
(-size, -size, color),
(-size, -size, color),
(-size, -size, 0)
] ]
} }
impl Transformers for Grid { impl Transformers for Grid {
fn apply(&self, _point_list: &[Point], _ws: &WorldState) -> Vec<Point> { fn apply(&self, _point_list: &[Point], _ws: &WorldState) -> Vec<Point> {
let mut sq1 = square_box(1000.0, 255 << 8); let mut sq1 = square_box(1000.0, 255 << 8);
let mut line = square_box(2000.0, 255); let mut line = square_box(2000.0, 255);
line.append(&mut sq1); line.append(&mut sq1);
let line: Vec<Point> = line.into_iter() let line: Vec<Point> = line.into_iter().map(|tpl| tpl.into()).collect();
.map(|tpl| tpl.into()).collect(); line
line
} }
} }

View File

@ -1,27 +0,0 @@
use crate::transformer::Transformers;
use crate::point::Point;
use crate::worldstate::WorldState;
use serde::{Serialize, Deserialize};
/// Converts helios Geometry to Helios
#[allow(dead_code)]
#[derive(Serialize, Deserialize, Debug, Clone, Copy)]
pub struct HeliosToEtherdream {
}
impl Transformers for HeliosToEtherdream {
fn apply(&self, point_list: &[Point], _ws: &WorldState) -> Vec<Point> {
// debug!("list helios {:?}", point_list);
let out = point_list.iter().map(|pt| {
Point {
x: 8.0 * (pt.x - 2047.0),
y: 8.0 * (pt.y - 2047.0),
..*pt
}
}).collect();
// debug!("list etherdream {:?}", out);
out
}
}

View File

@ -1,20 +1,18 @@
use crate::transformer::Transformers;
use crate::point::Point; use crate::point::Point;
use crate::worldstate::{WorldState,EDH}; use crate::transformer::Transformers;
use serde::{Serialize,Deserialize}; use crate::worldstate::{WorldState, EDH};
use serde::{Deserialize, Serialize};
/// Homography /// Homography
#[derive(Serialize,Deserialize,Debug,Clone,Copy)] #[derive(Serialize, Deserialize, Debug, Clone, Copy)]
pub struct Homography {} pub struct Homography {}
impl Transformers for Homography { impl Transformers for Homography {
fn apply(&self, point_list: &[Point], ws: &WorldState) -> Vec<Point> { fn apply(&self, point_list: &[Point], ws: &WorldState) -> Vec<Point> {
let edh : &EDH = &ws.edh; let edh: &EDH = &ws.edh;
point_list.iter() point_list.iter().map(|point| edh.apply(point)).collect()
.map(| point | edh.apply(point))
.collect()
} }
} }
@ -24,41 +22,67 @@ mod tests {
#[test] #[test]
fn identity_matrix_let_point_unchanged() { fn identity_matrix_let_point_unchanged() {
let p0 = Point { x: -1500.0, y: 1500.0, ..Point::default() }; let p0 = Point {
x: -1500.0,
y: 1500.0,
..Point::default()
};
let edh = EDH::new(vec![ let edh = EDH::new(vec![
vec![ 1.0, 0.0, 0.0 ], vec![1.0, 0.0, 0.0],
vec![ 0.0, 1.0, 0.0 ], vec![0.0, 1.0, 0.0],
vec![ 0.0, 0.0, 1.0 ] vec![0.0, 0.0, 1.0],
]).unwrap(); ])
.unwrap();
let ws = WorldState { edh : edh, ..WorldState::default() }; let ws = WorldState {
edh: edh,
let homography = Homography{}; ..WorldState::default()
let result = homography.apply(&[p0], &ws); };
assert_eq!(result, vec![Point { x: -1500.0, let homography = Homography {};
y: 1500.0, let result = homography.apply(&[p0], &ws);
..Point::default() }]);
assert_eq!(
result,
vec![Point {
x: -1500.0,
y: 1500.0,
..Point::default()
}]
);
} }
#[test] #[test]
fn rotation_matrix_rotate_the_point() { fn rotation_matrix_rotate_the_point() {
let p0 = Point { x: -1500.0, y: 1500.0, ..Point::default() }; let p0 = Point {
x: -1500.0,
y: 1500.0,
..Point::default()
};
let edh = EDH::new(vec![ let edh = EDH::new(vec![
vec![ 1.24107321e-03, 1.00500127e-03, 7.15439347e-01], vec![1.24107321e-03, 1.00500127e-03, 7.15439347e-01],
vec![-9.93223912e-04, 1.22652939e-03,-6.98671238e-01], vec![-9.93223912e-04, 1.22652939e-03, -6.98671238e-01],
vec![ 1.06017142e-17,-4.69459541e-17, 3.32700590e-05] vec![1.06017142e-17, -4.69459541e-17, 3.32700590e-05],
]).unwrap(); ])
.unwrap();
let ws = WorldState { edh : edh, ..WorldState::default() }; let ws = WorldState {
edh: edh,
let homography = Homography{}; ..WorldState::default()
let result = homography.apply(&[p0], &ws); };
assert_eq!(result, vec![Point { x: 10860.557, let homography = Homography {};
y: 79078.87, let result = homography.apply(&[p0], &ws);
..Point::default() }]);
assert_eq!(
result,
vec![Point {
x: 10860.557,
y: 79078.87,
..Point::default()
}]
);
} }
} }

View File

@ -1,28 +0,0 @@
use log::debug;
use crate::transformer::Transformers;
use crate::point::Point;
use crate::worldstate::WorldState;
use serde::{Serialize, Deserialize};
/// Converts helios Geometry to Helios
#[allow(dead_code)]
#[derive(Serialize, Deserialize, Debug, Clone, Copy)]
pub struct Intensity {
}
impl Transformers for Intensity {
fn apply(&self, point_list: &[Point], ws: &WorldState) -> Vec<Point> {
// debug!("list helios {:?}", point_list);
let out = point_list.iter().map(|pt| {
Point {
x: pt.x,
y: pt.y,
color: pt.color * ws.intensity
}
}).collect();
debug!("list intensity {:?}", out);
out
}
}

View File

@ -1,34 +1,49 @@
use crate::point::{Color, Point};
use crate::transformer::Transformers; use crate::transformer::Transformers;
use crate::point::Point;
use crate::worldstate::WorldState; use crate::worldstate::WorldState;
use serde::{Serialize,Deserialize}; use serde::{Deserialize, Serialize};
/// Replicate /// Replicate
#[allow(dead_code)] #[allow(dead_code)]
#[derive(Serialize,Deserialize,Debug,Clone,Copy)] #[derive(Serialize, Deserialize, Debug, Clone, Copy)]
pub enum Replicate { pub enum Replicate {
Until(usize), Until(usize),
Times(usize) Times(usize),
} }
impl Transformers for Replicate { impl Transformers for Replicate {
fn apply(&self, point_list: &[Point], _ws: &WorldState) -> Vec<Point> { fn apply(&self, point_list: &[Point], _ws: &WorldState) -> Vec<Point> {
let mut point_list2 = vec![]; let mut point_list2 = vec![];
match self {
Replicate::Until(n) => { match self {
while point_list2.len() < *n { Replicate::Until(n) => {
point_list2.append(&mut point_list.to_vec()); while point_list2.len() < *n {
} if point_list.len() == 0 {
}, // to prevent infinit loop in case of empty frame
Replicate::Times(n) => { point_list2.append(
for _ in 0..*n { &mut vec![
point_list2.append(&mut point_list.to_vec()); Point {
} x: 0.,
} y: 0.,
} color: Color { r: 0, g: 0, b: 0 }
point_list2 };
*n
]
.to_vec(),
);
} else {
point_list2.append(&mut point_list.to_vec());
}
}
}
Replicate::Times(n) => {
for _ in 0..*n {
point_list2.append(&mut point_list.to_vec());
}
}
}
point_list2
} }
} }

View File

@ -1,35 +1,32 @@
use crate::transformer::Transformers;
use crate::point::Point; use crate::point::Point;
use crate::transformer::Transformers;
use crate::worldstate::WorldState; use crate::worldstate::WorldState;
use serde::{Serialize,Deserialize}; use serde::{Deserialize, Serialize};
//use std::f32::consts::PI; //use std::f32::consts::PI;
/// Rotate /// Rotate
#[derive(Serialize,Deserialize,Debug,Clone,Copy)] #[derive(Serialize, Deserialize, Debug, Clone, Copy)]
pub struct Rotate { pub struct Rotate {
cx: f32, cx: f32,
cy: f32, cy: f32,
angle: f32, angle: f32,
} }
impl Transformers for Rotate { impl Transformers for Rotate {
fn apply(&self, point_list: &[Point], _ws: &WorldState) -> Vec<Point> { fn apply(&self, point_list: &[Point], _ws: &WorldState) -> Vec<Point> {
point_list.iter() point_list
.map(| pt | { .iter()
let dx = pt.x - self.cx; .map(|pt| {
let dy = pt.y - self.cy; let dx = pt.x - self.cx;
let cos = self.angle.cos(); let dy = pt.y - self.cy;
let sin = self.angle.sin(); let cos = self.angle.cos();
let x = (dx * cos - dy * sin) + self.cx; let sin = self.angle.sin();
let y = (dx * sin + dy * cos) + self.cy; let x = (dx * cos - dy * sin) + self.cx;
Point { x, let y = (dx * sin + dy * cos) + self.cy;
y, Point { x, y, ..*pt }
..*pt })
} .collect()
}).collect()
} }
} }

View File

@ -1,24 +1,25 @@
use crate::transformer::Transformers;
use crate::point::Point; use crate::point::Point;
use crate::transformer::Transformers;
use crate::worldstate::WorldState; use crate::worldstate::WorldState;
use serde::{Serialize,Deserialize}; use serde::{Deserialize, Serialize};
/// Translate /// Translate
#[derive(Serialize,Deserialize,Debug,Clone,Copy)] #[derive(Serialize, Deserialize, Debug, Clone, Copy)]
pub struct Translate { pub struct Translate {
pub x: f32, pub x: f32,
pub y: f32 pub y: f32,
} }
impl Transformers for Translate { impl Transformers for Translate {
fn apply(&self, point_list: &[Point], _ws: &WorldState) -> Vec<Point> { fn apply(&self, point_list: &[Point], _ws: &WorldState) -> Vec<Point> {
point_list.iter() point_list
.map(| pt | { .iter()
Point { x: pt.x + self.x, .map(|pt| Point {
y: pt.y + self.y, x: pt.x + self.x,
..*pt y: pt.y + self.y,
} ..*pt
}).collect() })
.collect()
} }
} }

View File

@ -1,54 +1,54 @@
use crate::point::{Point, Color};
use nalgebra::base::{Matrix3, Matrix1x3};
use crate::errors::{LJError, LJResult}; use crate::errors::{LJError, LJResult};
use crate::point::{Color, Point};
use log::debug; use log::debug;
use crate::redis_ctrl::Resampler; use nalgebra::base::{Matrix1x3, Matrix3};
#[derive(Debug, Default)] #[derive(Debug, Default)]
pub struct EDH { pub struct EDH {
pub matrix: Matrix3<f32>, pub matrix: Matrix3<f32>,
} }
impl EDH { impl EDH {
pub fn new(vec: Vec<Vec<f32>>) -> LJResult<EDH> { pub fn new(vec: Vec<Vec<f32>>) -> LJResult<EDH> {
if vec.len() != 3 || if vec.len() != 3 || vec[0].len() != 3 || vec[1].len() != 3 || vec[2].len() != 3 {
vec[0].len() != 3 || return Err(Box::new(LJError::BadEDH));
vec[1].len() != 3 || }
vec[2].len() != 3 {
return Err(Box::new(LJError::BadEDH));
}
// this is the matrix already transposed. // this is the matrix already transposed.
let matrix = Matrix3::new(vec[0][0], vec[1][0], vec[2][0], let matrix = Matrix3::new(
vec[0][1], vec[1][1], vec[2][1], vec[0][0], vec[1][0], vec[2][0], vec[0][1], vec[1][1], vec[2][1], vec[0][2], vec[1][2],
vec[0][2], vec[1][2], vec[2][2]); vec[2][2],
);
Ok(EDH { matrix }) Ok(EDH { matrix })
} }
pub fn apply(&self, point: &Point) -> Point { pub fn apply(&self, point: &Point) -> Point {
let p = Matrix1x3::new(point.x, point.y, 1.0); let p = Matrix1x3::new(point.x, point.y, 1.0);
let p = p * self.matrix; let p = p * self.matrix;
let new_p = Point { x: p[0] / p[2], y: p[1] / p[2], ..*point }; let new_p = Point {
x: p[0] / p[2],
y: p[1] / p[2],
..*point
};
debug!("{:?} => {:?}", point, new_p); debug!("{:?} => {:?}", point, new_p);
new_p new_p
} }
} }
#[derive(Debug, Default)] #[derive(Debug, Default)]
pub struct WorldState { pub struct WorldState {
pub edh: EDH, pub edh: EDH,
pub resampler: Resampler, pub resampler: Vec<f32>,
pub client_key: String, pub client_key: String,
pub intensity: u8, pub intensity: u8,
pub kpps: u32, pub kpps: u32,
pub color: Color, pub color: Color,
pub draw_black: bool, pub draw_black: bool,
pub draw_grid: bool, pub draw_grid: bool,
pub grid: Vec<Point>, pub grid: Vec<Point>,
pub color_balance: Color,
} }
impl WorldState {} impl WorldState {}

View File

@ -1,4 +1,4 @@
use lj_rust::conf::{Conf, DacFamily, HeliosConf, EtherDreamConf}; use lj_rust::conf::{Conf, DacFamily, EtherDreamConf, HeliosConf};
#[test] #[test]
fn it_loads_a_valid_conf() { fn it_loads_a_valid_conf() {