Compare commits

...

2 Commits

Author SHA1 Message Date
alban
89d38f51ec fix: etherdream: use sleep instead of ping 2024-08-14 13:16:18 +02:00
alban
650a3ed521 wip: dirty state for debugging etherdream 2023-08-05 19:11:33 +02:00
8 changed files with 179 additions and 172 deletions

View File

@ -22,10 +22,10 @@ redis_url = "redis://127.0.0.1:6379/"
# [dac.etherdream]
# ip = "192.168.1.68"
[[transformers]]
[transformers.translate]
x = 2000
y = 2000
#[[transformers]]
#[transformers.translate]
#x = 20
#y = 20
[[transformers]]
[transformers.replicate]

View File

@ -3,149 +3,148 @@ extern crate ether_dream;
use ether_dream::dac;
fn main() {
println!("Listening for an Ether Dream DAC...");
println!("Listening for an Ether Dream DAC...");
let (dac_broadcast, source_addr) = ether_dream::recv_dac_broadcasts()
.expect("failed to bind to UDP socket")
.filter_map(Result::ok)
.next()
.unwrap();
let mac_address = dac::MacAddress(dac_broadcast.mac_address);
let (dac_broadcast, source_addr) = ether_dream::recv_dac_broadcasts()
.expect("failed to bind to UDP socket")
.filter_map(Result::ok)
.next()
.unwrap();
let mac_address = dac::MacAddress(dac_broadcast.mac_address);
println!(
"Discovered DAC \"{}\" at \"{}\"! Connecting...",
mac_address, source_addr
);
println!(
"Discovered DAC \"{}\" at \"{}\"! Connecting...",
mac_address, source_addr
);
// Establish the TCP connection.
let mut stream = dac::stream::connect(&dac_broadcast, source_addr.ip().clone()).unwrap();
// Establish the TCP connection.
let mut stream = dac::stream::connect(&dac_broadcast, source_addr.ip().clone()).unwrap();
// If we want to create an animation (in our case a moving sine wave) we need a frame rate.
let frames_per_second = 60.0;
// Lets use the DAC at an eighth the maximum scan rate.
let points_per_second = stream.dac().max_point_rate / 32;
// Determine the number of points per frame given our target frame and point rates.
let points_per_frame = (points_per_second as f32 / frames_per_second) as u16;
// If we want to create an animation (in our case a moving sine wave) we need a frame rate.
let frames_per_second = 60.0;
// Lets use the DAC at an eighth the maximum scan rate.
let points_per_second = 20_000;
// Determine the number of points per frame given our target frame and point rates.
let points_per_frame = (points_per_second as f32 / frames_per_second) as u16;
println!(
"Preparing for playback:\n\tframe_hz: {}\n\tpoint_hz: {}\n\tpoints_per_frame: {}\n",
frames_per_second, points_per_second, points_per_frame
);
println!(
"Preparing for playback:\n\tframe_hz: {}\n\tpoint_hz: {}\n\tpoints_per_frame: {}\n",
frames_per_second, points_per_second, points_per_frame
);
// Prepare the DAC's playback engine and await the repsonse.
stream
.queue_commands()
.prepare_stream()
.submit()
.err()
.map(|err| {
eprintln!(
"err occurred when submitting PREPARE_STREAM \
// Prepare the DAC's playback engine and await the repsonse.
stream
.queue_commands()
.prepare_stream()
.submit()
.err()
.map(|err| {
eprintln!(
"err occurred when submitting PREPARE_STREAM \
command and listening for response: {}",
err
);
});
err
);
});
println!("Beginning playback!");
println!("Beginning playback!");
// The sine wave used to generate points.
let mut sine_wave = SineWave {
point: 0,
points_per_frame,
frames_per_second,
};
// The sine wave used to generate points.
let mut sine_wave = SineWave {
point: 0,
points_per_frame,
frames_per_second,
};
// Queue the initial frame and tell the DAC to begin producing output.
let n_points = points_to_generate(stream.dac());
stream
.queue_commands()
.data(sine_wave.by_ref().take(n_points))
.begin(0, points_per_second)
.submit()
.err()
.map(|err| {
eprintln!(
"err occurred when submitting initial DATA and BEGIN \
// Queue the initial frame and tell the DAC to begin producing output.
let n_points = points_to_generate(stream.dac());
stream
.queue_commands()
.data(sine_wave.by_ref().take(n_points))
.begin(0, points_per_second)
.submit()
.err()
.map(|err| {
eprintln!(
"err occurred when submitting initial DATA and BEGIN \
commands and listening for response: {}",
err
);
});
eprintln!("Stream dac{:?}", stream.dac());
err
);
});
// Loop and continue to send points forever.
loop {
// Determine how many points the DAC can currently receive.
let n_points = points_to_generate(stream.dac());
if let Err(err) = stream
.queue_commands()
.data(sine_wave.by_ref().take(n_points))
.submit()
{
eprintln!(
"err occurred when submitting DATA command and listening \
// Loop and continue to send points forever.
loop {
// Determine how many points the DAC can currently receive.
let n_points = points_to_generate(stream.dac());
if let Err(err) = stream
.queue_commands()
.data(sine_wave.by_ref().take(n_points))
.submit()
{
eprintln!(
"err occurred when submitting DATA command and listening \
for response: {}",
err
);
break;
}
}
err
);
break;
}
}
// Tell the DAC to stop producing output and return to idle. Wait for the response.
//
// Note that the DAC is commanded to stop on `Drop` if this is not called and any errors
// produced are ignored.
stream
.queue_commands()
.stop()
.submit()
.expect("err occurred when submitting STOP command and listening for response");
// Tell the DAC to stop producing output and return to idle. Wait for the response.
//
// Note that the DAC is commanded to stop on `Drop` if this is not called and any errors
// produced are ignored.
stream
.queue_commands()
.stop()
.submit()
.expect("err occurred when submitting STOP command and listening for response");
}
// Determine the number of points needed to fill the DAC.
fn points_to_generate(dac: &ether_dream::dac::Dac) -> usize {
dac.buffer_capacity as usize - 1 - dac.status.buffer_fullness as usize
dac.buffer_capacity as usize - 1 - dac.status.buffer_fullness as usize
}
// An iterator that endlessly generates a sine wave of DAC points.
//
// The sine wave oscillates at a rate of once per second.
struct SineWave {
point: u32,
points_per_frame: u16,
frames_per_second: f32,
point: u32,
points_per_frame: u16,
frames_per_second: f32,
}
impl Iterator for SineWave {
type Item = ether_dream::protocol::DacPoint;
fn next(&mut self) -> Option<Self::Item> {
let coloured_points_per_frame = self.points_per_frame - 1;
let i = (self.point % self.points_per_frame as u32) as u16;
let hz = 1.0;
let fract = i as f32 / coloured_points_per_frame as f32;
let phase = (self.point as f32 / coloured_points_per_frame as f32) / self.frames_per_second;
let amp = (hz * (fract + phase) * 2.0 * std::f32::consts::PI).sin();
let (r, g, b) = match i {
i if i == coloured_points_per_frame || i < 13 => (0, 0, 0),
_ => (std::u16::MAX, std::u16::MAX, std::u16::MAX),
};
let x_min = std::i16::MIN;
let x_max = std::i8::MAX as i16;
let x = (x_min as f32 + fract * (x_max as f32 - x_min as f32)) as i16;
let y = (amp * x_max as f32) as i16;
let control = 0;
let (u1, u2) = (0, 0);
let p = ether_dream::protocol::DacPoint {
control,
x,
y,
i,
r,
g,
b,
u1,
u2,
};
self.point += 1;
Some(p)
}
}
type Item = ether_dream::protocol::DacPoint;
fn next(&mut self) -> Option<Self::Item> {
let coloured_points_per_frame = self.points_per_frame - 1;
let i = (self.point % self.points_per_frame as u32) as u16;
let hz = 1.0;
let fract = i as f32 / coloured_points_per_frame as f32;
let phase = (self.point as f32 / coloured_points_per_frame as f32) / self.frames_per_second;
let amp = (hz * (fract + phase) * 2.0 * std::f32::consts::PI).sin();
let (r, g, b) = match i {
i if i == coloured_points_per_frame || i < 13 => (0, 0, 0),
_ => (std::u16::MAX, std::u16::MAX, std::u16::MAX),
};
let x_min = std::i16::MIN;
let x_max = std::i16::MAX;
let x = (x_min as f32 + fract * (x_max as f32 - x_min as f32)) as i16;
let y = (amp * x_max as f32) as i16;
let control = 0;
let (u1, u2) = (0, 0);
let p = ether_dream::protocol::DacPoint {
control,
x,
y,
i,
r,
g,
b,
u1,
u2,
};
self.point += 1;
Some(p)
}
}

View File

@ -78,7 +78,7 @@ impl Conf {
TransformConf::Intensity(r) => Box::new(*r),
TransformConf::Replicate(r) => Box::new(*r),
TransformConf::Rotate(r) => Box::new(*r),
TransformConf::Translate(t) => Box::new(*t),
TransformConf::Translate(r) => Box::new(*r),
};
v.push(t);
}

View File

@ -1,5 +1,5 @@
#[warn(unused_imports)]
use log::{ debug, info, warn};
use log::{debug, info, warn};
use std::net::SocketAddr;
use std::thread::sleep;
@ -14,6 +14,7 @@ use crate::device::{Device, Status, PlaybackState};
use crate::errors::{LJError, LJResult};
use crate::point::{Color, Point};
use ether_dream::protocol::{DacBroadcast, DacResponse};
use crate::device::PlaybackState::PLAYING;
#[warn(dead_code)]
@ -21,18 +22,6 @@ pub struct EtherdreamDevice {
pub conf: EtherDreamConf,
dac: DacBroadcast,
stream: Stream,
// "a": ACK "F": Full "I": invalid. 64 or 35 for no connection.
// /// The previous command was accepted.
// pub const ACK: u8 = 0x61;
// /// The write command could not be performed because there was not enough buffer space when it
// /// was received.
// pub const NAK_FULL: u8 = 0x46;
// /// The command contained an invalid `command` byte or parameters.
// pub const NAK_INVALID: u8 = 0x49;
// /// An emergency-stop condition still exists.
// pub const NAK_STOP_CONDITION: u8 = 0x21;
// }
dac_response: u8,
}
@ -52,7 +41,7 @@ impl EtherdreamDevice {
dac_broadcast.set_timeout(Some(time::Duration::new(10, 0)))?;
info!("Attempting to get DAC broadcast...");
let broadcast = dac_broadcast
.take(3)
.take(5)
.filter_map(|result| {
match result {
Err(err) => {
@ -85,17 +74,34 @@ impl EtherdreamDevice {
fn get_tcp_stream(dac: &DacBroadcast, source_address: &SocketAddr) -> LJResult<Stream> {
let mut stream = connect(dac, source_address.ip())?;
match stream
.queue_commands()
.prepare_stream()
.submit() {
Err(err) => warn!("err occurred when submitting PREPARE_STREAM command and listening for response: {}",err),
Ok(_) => info!("Prepared Stream.")
debug!("Stream dac BEFORE PREPARE {:?}", stream.dac());
debug!("Playback State BEFORE PREPARE {:?}, {:?}", stream.dac().dac.status.playback, Playback::Playing );
if stream.dac().dac.status.playback == Playback::Playing {
warn!("DAC was in playback PLAYING, attempting to stop");
match stream
.queue_commands()
.stop()
.submit() {
Err(err) => warn!("err occurred when submitting STOP command: {}",err),
Ok(_) => info!("Prepared Stream.")
}
}
if stream.dac().dac.status.playback != Playback::Prepared {
warn!("DAC was not in playback state PREPARED, attempting to prepare");
match stream
.queue_commands()
.prepare_stream()
.submit() {
Err(err) => warn!("err occurred when submitting PREPARE_STREAM command and listening for response: {}",err),
Ok(_) => info!("Prepared Stream.")
}
}
// If we want to create an animation (in our case a moving sine wave) we need a frame rate.
let frames_per_second = 60.0;
// Lets use the DAC at an eighth the maximum scan rate.
let points_per_second = stream.dac().max_point_rate / 32;
let points_per_second = 20_000;
// let points_per_second = 30_000;
debug!("points per second {:?}", points_per_second);
// Determine the number of points per frame given our target frame and point rates.
let points_per_frame = (points_per_second as f32 / frames_per_second) as u16;
@ -104,6 +110,7 @@ impl EtherdreamDevice {
points_per_frame,
frames_per_second,
};
debug!("Stream dac BEFORE BEGIN {:?}", stream.dac());
match stream
.queue_commands()
@ -122,15 +129,15 @@ impl EtherdreamDevice {
/***
Determine the number of points needed to fill the DAC.
***/
// Fixme thread 'main' panicked at 'attempt to subtract with overflow', src/device/etherdream.rs:144:24
let n_points = self.dac.buffer_capacity as usize - self.stream.dac().dac.status.buffer_fullness as usize - 1;
let cap = self.dac.buffer_capacity as usize;
let fullness = self.stream.dac().dac.status.buffer_fullness as usize;
// Sometimes we had thread 'main' panicked at 'attempt to subtract with overflow', src/device/etherdream.rs:144:24
let n_points = if cap > fullness { cap - fullness } else { 0 };
n_points
}
fn ping(&mut self) -> LJResult<()> {
Ok(self.stream.queue_commands().ping().submit()?)
}
}
@ -144,6 +151,9 @@ impl Device for EtherdreamDevice {
let now = SystemTime::now();
let now: DateTime<Utc> = now.into();
let now = now.to_rfc3339();
// debug!("Dac Status: {:?} ", status );
// debug!("Etherdream Dac {:?} ", self.dac );
debug!("Stream dac{:?}", self.stream.dac());
Status {
last_traced_at: now,
@ -152,9 +162,6 @@ impl Device for EtherdreamDevice {
capacity: self.points_capacity(),
lack: self.dac_response.to_string(),
}
// debug!("Dac Status: {:?} ", status );
// debug!("Etherdream Dac {:?} ", self.dac );
// debug!("Stream dac{:?}", self.stream.dac());
// status
}
@ -162,22 +169,24 @@ impl Device for EtherdreamDevice {
line: Vec<Point>,
_speed: u32,
) -> LJResult<()> {
let chunk_size = 64;
let chunk_size = 512;
let points_iter = line.into_iter();
for chunk in points_iter.as_slice().chunks(chunk_size){
for chunk in points_iter.as_slice().chunks(chunk_size) {
debug!("New chunk length: {:?}", chunk.len());
let capacity = self.points_capacity();
debug!("capacity : {:?}", capacity);
loop {
let capacity = self.points_capacity();
if chunk.len() > capacity as usize {
debug!("Sleep, capacity : {:?}", capacity);
debug!("Sleep");
// Sleep for 1/100th of a sec
sleep(Duration::new( 0, 10000000));
self.ping();
sleep(Duration::new(0, 100_000_000));
break;
// self.ping();
} else {
break;
}
}
debug!("drawing");
debug!("Drawing");
match self.stream
.queue_commands()
.data(
@ -216,6 +225,7 @@ impl Device for EtherdreamDevice {
fn stop(&mut self) -> LJResult<()> {
info!("Stopping Etherdream device...");
info!("Stream dac{:?}", self.stream.dac());
match self.stream
.queue_commands()
.stop()

View File

@ -76,7 +76,7 @@ fn run_all() -> LJResult<()> {
// Dispatch based on redis requests
while running.load(Ordering::SeqCst) {
rs.set_status(tracer.status())?;
let _ = framerate_handler.handle_time()?;
// let _ = framerate_handler.handle_time()?;
let order = rs.get_order(config.laser_id)?;
match order {
Order::Draw | Order::Black | Order::Grid => {

View File

@ -15,6 +15,7 @@ pub struct Color {
pub g: u8,
pub b: u8,
}
impl Mul<u8> for Color {
type Output = Self;

View File

@ -7,16 +7,15 @@ use serde::{Serialize, Deserialize};
/// Converts helios Geometry to Helios
#[allow(dead_code)]
#[derive(Serialize, Deserialize, Debug, Clone, Copy)]
pub struct HeliosToEtherdream {
}
pub struct HeliosToEtherdream {}
impl Transformers for HeliosToEtherdream {
fn apply(&self, point_list: &[Point], _ws: &WorldState) -> Vec<Point> {
// debug!("list helios {:?}", point_list);
let out = point_list.iter().map(|pt| {
Point {
x: 8.0 * (pt.x - 2047.0),
y: 8.0 * (pt.y - 2047.0),
x: 50.0 * (320.0 - pt.x),
y: 40.0 * (240.0 - pt.y),
..*pt
}
}).collect();

View File

@ -8,20 +8,18 @@ use serde::{Serialize, Deserialize};
/// Converts helios Geometry to Helios
#[allow(dead_code)]
#[derive(Serialize, Deserialize, Debug, Clone, Copy)]
pub struct Intensity {
}
pub struct Intensity {}
impl Transformers for Intensity {
fn apply(&self, point_list: &[Point], ws: &WorldState) -> Vec<Point> {
// debug!("list helios {:?}", point_list);
let out = point_list.iter().map(|pt| {
Point {
x: pt.x,
y: pt.y,
color: pt.color * ws.intensity
}
}).collect();
debug!("list intensity {:?}", out);
color: pt.color * ws.intensity,
..*pt
}
}).collect();
// debug!("list intensity {:?}", out);
out
}
}