lj_rust/src/device/etherdream.rs

311 lines
9.0 KiB
Rust

#[warn(unused_imports)]
use log::{debug, info, warn};
use std::net::SocketAddr;
use std::thread::sleep;
use ether_dream::dac::stream::{CommunicationError, connect};
use ether_dream::dac::{Playback, Stream};
use chrono::{DateTime, Utc};
use std::time;
use std::time::{Duration, SystemTime};
use crate::conf::EtherDreamConf;
use crate::device::{Device, Status, PlaybackState};
use crate::errors::{LJError, LJResult};
use crate::point::{Color, Point};
use ether_dream::protocol::{DacBroadcast, DacResponse};
use crate::device::PlaybackState::PLAYING;
#[warn(dead_code)]
pub struct EtherdreamDevice {
pub conf: EtherDreamConf,
dac: DacBroadcast,
stream: Stream,
dac_response: u8,
}
impl EtherdreamDevice {
pub fn new(conf: &EtherDreamConf) -> LJResult<Self> {
let (dac, _source_address, stream) = EtherdreamDevice::connect(conf)?;
Ok(Self {
conf: (*conf).clone(),
dac,
stream,
dac_response: DacResponse::ACK,
})
}
fn connect(conf: &EtherDreamConf) -> LJResult<(DacBroadcast, SocketAddr, Stream)> {
let ip = &conf.ip;
let dac_broadcast = ether_dream::recv_dac_broadcasts()?;
dac_broadcast.set_timeout(Some(time::Duration::new(10, 0)))?;
info!("Attempting to get DAC broadcast...");
let broadcast = dac_broadcast
.take(5)
.filter_map(|result| {
match result {
Err(err) => {
warn!( "Failed to find a valid DAC via broadcast. Error: {:?}", err);
info!( "Retrying...");
None
}
Ok((dac, source_addr)) => {
info!("Valid broadcast, source_addr: {}", source_addr);
if source_addr.is_ipv6() { return None; }
if &source_addr.ip().to_string() != ip { return None; }
Some(Ok((dac, source_addr)))
}
}
})
.next()
.expect("Failed to receive broadcast.");
match broadcast {
Err(err) => {
Err(Box::new(LJError::EtherdreamConnectError(err)))
}
Ok((dac, source_addr)) => {
info!("Trying to open TCP stream...");
let stream = EtherdreamDevice::get_tcp_stream(&dac, &source_addr)?;
info!("Finished configuring DAC and TCP stream.");
Ok((dac, source_addr, stream))
}
}
}
fn get_tcp_stream(dac: &DacBroadcast, source_address: &SocketAddr) -> LJResult<Stream> {
let mut stream = connect(dac, source_address.ip())?;
debug!("Stream dac BEFORE PREPARE {:?}", stream.dac());
debug!("Playback State BEFORE PREPARE {:?}, {:?}", stream.dac().dac.status.playback, Playback::Playing );
if stream.dac().dac.status.playback == Playback::Playing {
warn!("DAC was in playback PLAYING, attempting to stop");
match stream
.queue_commands()
.stop()
.submit() {
Err(err) => warn!("err occurred when submitting STOP command: {}",err),
Ok(_) => info!("Prepared Stream.")
}
}
if stream.dac().dac.status.playback != Playback::Prepared {
warn!("DAC was not in playback state PREPARED, attempting to prepare");
match stream
.queue_commands()
.prepare_stream()
.submit() {
Err(err) => warn!("err occurred when submitting PREPARE_STREAM command and listening for response: {}",err),
Ok(_) => info!("Prepared Stream.")
}
}
// If we want to create an animation (in our case a moving sine wave) we need a frame rate.
let frames_per_second = 60.0;
// Lets use the DAC at an eighth the maximum scan rate.
let points_per_second = 20_000;
// let points_per_second = 30_000;
debug!("points per second {:?}", points_per_second);
// Determine the number of points per frame given our target frame and point rates.
let points_per_frame = (points_per_second as f32 / frames_per_second) as u16;
let mut sine_wave = SineWave {
point: 0,
points_per_frame,
frames_per_second,
};
debug!("Stream dac BEFORE BEGIN {:?}", stream.dac());
match stream
.queue_commands()
.data(sine_wave.by_ref().take(400))
// .data(begin_list.into_iter().take(400 as usize))
.begin(0, points_per_second)
.submit() {
Err(err) => warn!("err occurred when submitting first data: {}",err),
Ok(_) => info!("Sent first data to Etherdream.")
}
Ok(stream)
}
fn points_capacity(&self) -> usize {
/***
Determine the number of points needed to fill the DAC.
***/
let cap = self.dac.buffer_capacity as usize;
let fullness = self.stream.dac().dac.status.buffer_fullness as usize;
// Sometimes we had thread 'main' panicked at 'attempt to subtract with overflow', src/device/etherdream.rs:144:24
let n_points = if cap > fullness { cap - fullness } else { 0 };
n_points
}
fn ping(&mut self) -> LJResult<()> {
Ok(self.stream.queue_commands().ping().submit()?)
}
}
impl Device for EtherdreamDevice {
fn status(&mut self) -> Status {
let playback_state = match self.stream.dac().dac.status.playback {
Playback::Idle => PlaybackState::IDLE,
Playback::Prepared => PlaybackState::PREPARE,
Playback::Playing => PlaybackState::PLAYING,
};
let now = SystemTime::now();
let now: DateTime<Utc> = now.into();
let now = now.to_rfc3339();
// debug!("Dac Status: {:?} ", status );
// debug!("Etherdream Dac {:?} ", self.dac );
debug!("Stream dac{:?}", self.stream.dac());
Status {
last_traced_at: now,
properties: vec!["foo".to_string()],
playback_state,
capacity: self.points_capacity(),
lack: self.dac_response.to_string(),
}
// status
}
fn draw(&mut self,
line: Vec<Point>,
_speed: u32,
) -> LJResult<()> {
let chunk_size = 512;
let points_iter = line.into_iter();
for chunk in points_iter.as_slice().chunks(chunk_size) {
debug!("New chunk length: {:?}", chunk.len());
let capacity = self.points_capacity();
debug!("capacity : {:?}", capacity);
loop {
if chunk.len() > capacity as usize {
debug!("Sleep");
// Sleep for 1/100th of a sec
sleep(Duration::new(0, 100_000_000));
break;
// self.ping();
} else {
break;
}
}
debug!("Drawing");
match self.stream
.queue_commands()
.data(
chunk.into_iter()
.map(|point| (*point).into())
.take(chunk_size as usize)
)
.submit() {
Err(err) => {
// We should account for
// 'Broken pipe (os error 32)'
// Connection reset by peer (os error 104)
self.dac_response = match err {
CommunicationError::Io(err) => {
warn!("IO ERROR while drawing: '{}'",err);
DacResponse::ACK
}
CommunicationError::Protocol(err) => {
warn!("Protocol ERROR while drawing: '{}'",err);
DacResponse::ACK
}
CommunicationError::Response(err) => {
warn!("Response ERROR while drawing: '{}'",err);
err.response.response
}
};
}
Ok(_) => {
self.dac_response = DacResponse::ACK;
// debug!("Draw is ok");
}
};
}
Ok(())
}
fn stop(&mut self) -> LJResult<()> {
info!("Stopping Etherdream device...");
info!("Stream dac{:?}", self.stream.dac());
match self.stream
.queue_commands()
.stop()
.submit()
{
Err(err) => {
warn!("Failed to stop EtherDream device with error {:?}", err);
Err(Box::new(err))
}
Ok(_) => {
info!("Sucessfully closed EtherDream device.");
Ok(())
}
}
}
fn grid(&mut self) -> Vec<Point> {
let dim_mid = 16000 as f32;
let dim_max = 32000 as f32;
let col_min = Color { r: 0, g: 0, b: 0 };
let col_max = Color { r: 255, g: 255, b: 255 };
vec![
Point { x: -dim_max, y: dim_max, color: col_min },
Point { x: -dim_max, y: dim_max, color: col_max },
Point { x: dim_max, y: dim_max, color: col_max },
Point { x: dim_max, y: -dim_max, color: col_max },
Point { x: -dim_max, y: -dim_max, color: col_max },
Point { x: -dim_max, y: -dim_mid, color: col_min },
Point { x: -dim_mid, y: dim_mid, color: col_min },
Point { x: -dim_mid, y: dim_mid, color: col_max },
Point { x: dim_mid, y: dim_mid, color: col_max },
Point { x: dim_mid, y: -dim_mid, color: col_max },
Point { x: -dim_mid, y: -dim_mid, color: col_max },
Point { x: -dim_mid, y: -dim_mid, color: col_min },
]
}
}
// An iterator that endlessly generates a sine wave of DAC points.
//
// The sine wave oscillates at a rate of once per second.
struct SineWave {
point: u32,
points_per_frame: u16,
frames_per_second: f32,
}
impl Iterator for SineWave {
type Item = ether_dream::protocol::DacPoint;
fn next(&mut self) -> Option<Self::Item> {
let coloured_points_per_frame = self.points_per_frame - 1;
let i = (self.point % self.points_per_frame as u32) as u16;
let hz = 1.0;
let fract = i as f32 / coloured_points_per_frame as f32;
let phase = (self.point as f32 / coloured_points_per_frame as f32) / self.frames_per_second;
let amp = (hz * (fract + phase) * 2.0 * std::f32::consts::PI).sin();
let (r, g, b) = match i {
i if i == coloured_points_per_frame || i < 13 => (0, 0, 0),
_ => (std::u16::MAX, std::u16::MAX, std::u16::MAX),
};
let x_min = std::i16::MIN;
let x_max = std::i16::MAX;
let x = (x_min as f32 + fract * (x_max as f32 - x_min as f32)) as i16;
let y = (amp * x_max as f32) as i16;
let control = 0;
let (u1, u2) = (0, 0);
let p = ether_dream::protocol::DacPoint {
control,
x,
y,
i,
r,
g,
b,
u1,
u2,
};
// debug!("{:?}",p);
self.point += 1;
Some(p)
}
}