123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300 |
- #!/usr/bin/python3
- # -*- coding: utf-8 -*-
- # -*- mode: Python -*-
-
-
- '''
-
- redilysis
- v0.1.0
-
- A complex effect that depends on redis keys for audio analysis
-
- see https://git.interhacker.space/teamlase/redilysis for more informations
- about the redilysis project
-
- LICENCE : CC
-
- by cocoa
-
-
- '''
- from __future__ import print_function
- import argparse
- import ast
- import os
- import math
- import random
- import redis
- import sys
- import time
- name = "filters::redilysis"
-
- def debug(*args, **kwargs):
- if( verbose == False ):
- return
- print(*args, file=sys.stderr, **kwargs)
- def msNow():
- return time.time()
-
- # The list of available modes => redis keys each requires to run
- oModeList = {
- "rms_noise": ["rms"],
- "rms_size": ["rms"],
- "bpm_size": ["bpm"],
- "bpm_detect_size": ["bpm","bpm_delay","bpm_sample_interval","beats"]
- }
- CHAOS = 1
- REDISLATENCY = 30
- REDIS_FREQ = 300
-
- # General Args
- argsparser = argparse.ArgumentParser(description="Redilysis filter")
- argsparser.add_argument("-v","--verbose",action="store_true",help="Verbose")
- # Redis Args
- argsparser.add_argument("-i","--ip",help="IP address of the Redis server ",default="127.0.0.1",type=str)
- argsparser.add_argument("-p","--port",help="Port of the Redis server ",default="6379",type=str)
- argsparser.add_argument("-s","--redis-freq",help="Query Redis every x (in milliseconds). Default:{}".format(REDIS_FREQ),default=REDIS_FREQ,type=int)
- # General args
- argsparser.add_argument("-x","--centerX",help="geometrical center X position",default=400,type=int)
- argsparser.add_argument("-y","--centerY",help="geometrical center Y position",default=400,type=int)
- argsparser.add_argument("-f","--fps",help="Frame Per Second",default=30,type=int)
- # Modes And Common Modes Parameters
- argsparser.add_argument("-l","--redisLatency",help="Latency in ms to substract. Default:{}".format(REDISLATENCY),default=REDISLATENCY,type=float)
- argsparser.add_argument("-m","--modelist",required=True,help="Comma separated list of modes to use from: {}".format("i, ".join(oModeList.keys())),type=str)
- argsparser.add_argument("--chaos",help="How much disorder to bring. High value = More chaos. Default {}".format(CHAOS), default=CHAOS, type=str)
-
- args = argsparser.parse_args()
- ip = args.ip
- port = args.port
- redisFreq = args.redis_freq / 1000
- verbose = args.verbose
- fps = args.fps
- centerX = args.centerX
- centerY = args.centerY
- redisLatency = args.redisLatency
- chaos = float(args.chaos)
- optimal_looptime = 1 / fps
-
- modeList = args.modelist.split(",")
- redisKeys = []
- for mode in modeList:
- if not mode in oModeList:
- print("Mode '{}' is invalid. Exiting.".format(mode))
- sys.exit(2)
- redisKeys += oModeList[mode]
- redisKeys = list(set(redisKeys))
- debug(name,"Redis Keys:{}".format(redisKeys))
- redisData = {}
- redisLastHit = msNow() - 99999
- r = redis.Redis(
- host=ip,
- port=port)
-
- # Records the last bpm
- tsLastBeat = time.time()
-
- def gauss(x, mu, sigma):
- return( math.exp(-math.pow((x-mu),2)/(2*math.pow(sigma,2))/math.sqrt(2*math.pi*math.pow(sigma,2))))
-
- previousPTTL = 0
- tsNextBeatsList = []
- def bpmDetect( ):
- """
- An helper to compute the next beat time in milliseconds
- Returns True if the cache was updated
- """
- global tsNextBeatsList
- global previousPTTL
- global redisLastHit
- global redisLatency
-
- # Get the redis PTTL value for bpm
- PTTL = redisData["bpm_pttl"]
-
- # Skip early if PTTL < 0
- if PTTL < 0 :
- debug(name,"bpmDetect skip detection : PTTL expired for 'bpm' key")
- return False
-
- # Skip early if the record hasn't been rewritten
- if PTTL <= previousPTTL :
- previousPTTL = PTTL
- #debug(name,"bpmDetect skip detection : {} <= {}".format(PTTL, previousPTTL))
- return False
- debug(name,"bpmDetect running detection : {} > {}".format(PTTL, previousPTTL))
- previousPTTL = PTTL
-
- # Skip early if beat list is empty
- beatsList = ast.literal_eval(redisData["beats"])
- tsNextBeatsList = []
- if( len(beatsList) == 0 ):
- return True
-
- # Read from redis
- bpm = float(redisData["bpm"])
- msBpmDelay = float(redisData["bpm_delay"])
- samplingInterval = float(redisData["bpm_sample_interval"])
-
- # Calculate some interpolations
- lastBeatTiming = float(beatsList[len(beatsList) - 1])
- msPTTLDelta = 2 * samplingInterval - float(PTTL)
- sPerBeat = 60 / bpm
- lastBeatDelay = msBpmDelay - lastBeatTiming*1000 + msPTTLDelta
- countBeatsPast = math.floor( (lastBeatDelay / 1000) / sPerBeat)
- #debug(name,"bpmDetect lastBeatTiming:{}\tmsPTTLDelta:{}\tsPerBeat:{}".format(lastBeatTiming,msPTTLDelta,sPerBeat))
- #debug(name,"lastBeatDelay:{}\t countBeatsPast:{}".format(lastBeatDelay, countBeatsPast))
- for i in range( countBeatsPast, 1000):
- beatTime = i * sPerBeat - lastBeatTiming
- if beatTime < 0:
- continue
- if beatTime * 1000 > 2 * samplingInterval :
- break
- #debug(name, "bpmDetect beat add beatTime:{} redisLastHit:{}".format(beatTime, redisLastHit))
- tsNextBeatsList.append( redisLastHit + beatTime - redisLatency/1000)
- debug(name, "bpmDetect new tsNextBeatsList:{}".format(tsNextBeatsList))
-
- return True
-
- def bpm_detect_size( pl ):
- bpmDetect()
-
- # Find the next beat in the list
- tsNextBeat = 0
-
- now = time.time()
- msNearestBeat = None
- msRelativeNextBTList = list(map( lambda a: abs(now - a) * 1000, tsNextBeatsList))
- msToBeat = min( msRelativeNextBTList)
-
- #debug(name,"bpm_detect_size msRelativeNextBTList:{} msToBeat:{}".format(msRelativeNextBTList,msToBeat))
- # Calculate the intensity based on bpm coming/leaving
- # The curb is a gaussian
- mu = 15
- intensity = gauss( msToBeat, 0 , mu)
- #debug(name,"bpm_size","mu:{}\t msToBeat:{}\tintensity:{}".format(mu, msToBeat, intensity))
- if msToBeat < 20:
- debug(name,"bpm_detect_size kick:{}".format(msToBeat))
- pass
- for i, point in enumerate(pl):
- ref_x = point[0]-centerX
- ref_y = point[1]-centerY
- #debug(name,"In new ref x:{} y:{}".format(point[0]-centerX,point[1]-centerY))
- angle=math.atan2( point[0] - centerX , point[1] - centerY )
- l = ref_y / math.cos(angle)
- new_l = l * intensity
- #debug(name,"bpm_size","angle:{} l:{} new_l:{}".format(angle,l,new_l))
- new_x = math.sin(angle) * new_l + centerX
- new_y = math.cos(angle) * new_l + centerY
- #debug(name,"x,y:({},{}) x',y':({},{})".format(point[0],point[1],new_x,new_y))
- pl[i][0] = new_x
- pl[i][1] = new_y
- #debug( name,"bpm_detect_size output:{}".format(pl))
- return( pl );
-
- def bpm_size( pl ):
- global tsLastBeat
- bpm = float(redisData["bpm"])
- # msseconds ber beat
- msPerBeat = int(60 / bpm * 1000)
- # Calculate the intensity based on bpm coming/leaving
- # The curb is a gaussian
- mu = math.sqrt(msPerBeat)
- msTimeToLastBeat = (time.time() - tsLastBeat) * 1000
- msTimeToNextBeat = (msPerBeat - msTimeToLastBeat)
- intensity = gauss( msTimeToNextBeat, 0 , mu)
- debug(name,"bpm_size","msPerBeat:{}\tmu:{}".format(msPerBeat, mu))
- debug(name,"bpm_size","msTimeToLastBeat:{}\tmsTimeToNextBeat:{}\tintensity:{}".format(msTimeToLastBeat, msTimeToNextBeat, intensity))
- if msTimeToNextBeat <= 0 :
- tsLastBeat = time.time()
- for i, point in enumerate(pl):
- ref_x = point[0]-centerX
- ref_y = point[1]-centerY
- #debug(name,"In new ref x:{} y:{}".format(point[0]-centerX,point[1]-centerY))
- angle=math.atan2( point[0] - centerX , point[1] - centerY )
- l = ref_y / math.cos(angle)
- new_l = l * intensity
- #debug(name,"bpm_size","angle:{} l:{} new_l:{}".format(angle,l,new_l))
- new_x = math.sin(angle) * new_l + centerX
- new_y = math.cos(angle) * new_l + centerY
- #debug(name,"x,y:({},{}) x',y':({},{})".format(point[0],point[1],new_x,new_y))
- pl[i][0] = new_x
- pl[i][1] = new_y
- #debug( name,"bpm_noise output:{}".format(pl))
- return pl
-
- def rms_size( pl ):
- rms = float(redisData["rms"])
- for i, point in enumerate(pl):
-
- ref_x = point[0]-centerX
- ref_y = point[1]-centerY
- debug(name,"In new ref x:{} y:{}".format(point[0]-centerX,point[1]-centerY))
- angle=math.atan2( point[0] - centerX , point[1] - centerY )
- l = ref_y / math.cos(angle)
- debug(name,"angle:{} l:{}".format(angle,l))
- new_l = l + rms * chaos
- new_x = math.sin(angle) * new_l + centerX
- new_y = math.cos(angle) * new_l + centerY
- debug(name,"x,y:({},{}) x',y':({},{})".format(point[0],point[1],new_x,new_y))
- pl[i][0] = new_x
- pl[i][1] = new_y
- #debug( name,"rms_noise output:{}".format(pl))
- return pl
-
- def rms_noise( pl ):
- rms = float(redisData["rms"])
- debug(name, "pl:{}".format(pl))
- for i, point in enumerate(pl):
- #debug(name,"rms_noise chaos:{} rms:{}".format(chaos, rms))
- xRandom = random.uniform(-1,1) * rms * chaos
- yRandom = random.uniform(-1,1) * rms * chaos
- #debug(name,"rms_noise xRandom:{} yRandom:{}".format(xRandom, yRandom))
- pl[i][0] += xRandom
- pl[i][1] += yRandom
- #debug( name,"rms_noise output:{}".format(pl))
- return pl
-
-
- def refreshRedis():
- global redisLastHit
- global redisData
- # Skip if cache is sufficent
- diff = msNow() - redisLastHit
- if diff < redisFreq :
- #debug(name, "refreshRedis not updating redis, {} < {}".format(diff, redisFreq))
- pass
- else:
- #debug(name, "refreshRedis updating redis, {} > {}".format(diff, redisFreq))
- redisLastHit = msNow()
- for key in redisKeys:
- redisData[key] = r.get(key).decode('ascii')
- #debug(name,"refreshRedis key:{} value:{}".format(key,redisData[key]))
- # Only update the TTLs
- if 'bpm' in redisKeys:
- redisData['bpm_pttl'] = r.pttl('bpm')
- #debug(name,"refreshRedis key:bpm_ttl value:{}".format(redisData["bpm_pttl"]))
- #debug(name,"redisData:{}".format(redisData))
- return True
-
- try:
- while True:
- refreshRedis()
- start = time.time()
- line = sys.stdin.readline()
- if line == "":
- time.sleep(0.01)
- line = line.rstrip('\n')
- pointsList = ast.literal_eval(line)
- # Do the filter
- for mode in modeList:
- pointsList = locals()[mode](pointsList)
- print( pointsList, flush=True )
- looptime = time.time() - start
- # debug(name+" looptime:"+str(looptime))
- if( looptime < optimal_looptime ):
- time.sleep( optimal_looptime - looptime)
- # debug(name+" micro sleep:"+str( optimal_looptime - looptime))
- except EOFError:
- debug(name+" break")# no more information
|