This commit is contained in:
leduc 2025-04-29 06:20:13 +02:00
parent b52a0e61a1
commit f06637e9b2
2 changed files with 61 additions and 1 deletions

View File

@ -2,6 +2,11 @@
AllEndpoints is a powerful Python module for making inferences with various LLM providers through a unified interface. It supports multiple providers including Ollama (local), HuggingFace, Together, Google Gemini, AIQL, Groq, NVIDIA, and GitHub Copilot APIs.
> **Quick Start**: With [uv](https://github.com/astral-sh/uv) installed, you can run AllEndpoints without explicit dependency installation:
> ```bash
> uv run allendpoints.py --list
> ```
## Table of Contents
- [Installation](#installation)
@ -26,10 +31,24 @@ AllEndpoints is a powerful Python module for making inferences with various LLM
cd allendpoints
```
2. Install the required dependencies using the requirements.txt file:
2. Choose one of the following installation methods:
### Option A: Using pip
Install the required dependencies using the requirements.txt file:
```bash
pip install -r requirements.txt
```
Then run the script directly:
```bash
python allendpoints.py [arguments]
```
### Option B: Using uv (Recommended)
If you have [uv](https://github.com/astral-sh/uv) installed, you can run the script without explicitly installing dependencies:
```bash
uv run allendpoints.py [arguments]
```
This will automatically create a virtual environment and install all required dependencies on first run.
3. Install Ollama (optional, for local inference):
- [Ollama Installation Guide](https://github.com/ollama/ollama)
@ -140,32 +159,56 @@ options:
**List all available providers and models:**
```bash
# Using python directly
python allendpoints.py --list
# Using uv run
uv run allendpoints.py --list
```
**Run inference with a specific provider and model:**
```bash
# Using python directly
python allendpoints.py "What is the capital of France?" --provider ollama --model llama3.2:3b
# Using uv run
uv run allendpoints.py "What is the capital of France?" --provider ollama --model llama3.2:3b
```
**Run inference with a specific provider and its default model:**
```bash
# Using python directly
python allendpoints.py "Explain quantum computing" --provider gemini
# Using uv run
uv run allendpoints.py "Explain quantum computing" --provider gemini
```
**Run inference with a custom system prompt:**
```bash
# Using python directly
python allendpoints.py "Write a poem about AI" --provider ollama --model llama3.2:3b --system "You are a poetic assistant."
# Using uv run
uv run allendpoints.py "Write a poem about AI" --provider ollama --model llama3.2:3b --system "You are a poetic assistant."
```
**Run inference on all available providers and models:**
```bash
# Using python directly
python allendpoints.py "What is the meaning of life?" -a
# Using uv run
uv run allendpoints.py "What is the meaning of life?" -a
```
**Run with debug output:**
```bash
# Using python directly
python allendpoints.py "How does a nuclear reactor work?" --provider nvidia --model qwen2.5-coder-32b --debug
# Using uv run
uv run allendpoints.py "How does a nuclear reactor work?" --provider nvidia --model qwen2.5-coder-32b --debug
```
## Using as a Python Module

17
pyproject.toml Normal file
View File

@ -0,0 +1,17 @@
[project]
name = "allendpoints"
version = "0.1.0"
description = "A powerful Python module for making inferences with various LLM providers through a unified interface."
readme = "README.md"
requires-python = ">=3.12"
dependencies = [
"ollama>=0.1.6",
"requests>=2.31.0",
"google-generativeai>=0.3.0",
"huggingface_hub>=0.19.0",
"together>=0.2.8",
"groq>=0.4.0",
"openai>=1.6.0",
"colorama>=0.4.6",
"python-dotenv>=1.0.0"
]