snap2laz/worker.py

142 lines
3.9 KiB
Python
Executable File

#! /usr/local/bin/python3
from io import BytesIO
from numpy import asarray
from PIL import Image
from redis import Redis
import base64
import json
import os
import potrace
import re
import time
color = 65280
environ = os.environ
host = environ['DB_HOST'] if 'DB_HOST' in os.environ else "localhost"
port = environ['DB_PORT'] if 'DB_PORT' in os.environ else 6379
r = Redis(host=host, port=port)
def convertImg(src, image_path="/tmp/"):
base64_data = re.sub('^data:image/.+;base64,', '', src)
byte_data = base64.b64decode(base64_data)
image_data = BytesIO(byte_data)
img = Image.open(image_data).convert("1")
return img
# Read results from redis
data = r.lpop('image-convert')
while data :
try:
item = json.loads(data)
image_data = item["image_data"]
text = item["text"]
hash_name = item["hash_name"]
# Vectorize the image
image = convertImg( image_data )
bmp = potrace.Bitmap( asarray( image ) )
# Trace the bitmap to a path
path = bmp.trace(turdsize=16,alphamax=0.0, opticurve=0, opttolerance=1.0)
# Record the min/max coordinates and a list of points
min_x = 0
min_y = 0
max_x = -9999
max_y = -9999
pl = []
pl_index = 0
odd_indices = []
def plappend( point ):
global pl, pl_index, odd_indices, min_x, min_y, max_x, max_y
pl.append(point)
pl_index += 1
suspect = False
if point[0] <= min_x :
min_x = point[0]
suspect = True
if point[0] >= max_x :
max_x = point[0]
suspect = True
if point[1] <= min_y :
min_y = point[1]
suspect = True
if point[1] >= max_y :
max_y = point[1]
suspect = True
if suspect == True:
odd_indices.append(pl_index)
return True
return False
for curve in path:
start = curve.start_point
plappend([int(start[0]),int(start[1]),0])
plappend([int(start[0]),int(start[1]),color])
for segment in curve:
end_point_x, end_point_y = segment.end_point
if segment.is_corner:
c_x, c_y = segment.c
plappend([int(c_x),int(c_y),color])
pass
#
else:
c1_x, c1_y = segment.c1
x, y = segment.c2
plappend([int(x),int(y),color])
plappend([int(c1_x),int(c1_y),color])
#
plappend([int(start[0]),int(start[1]),0])
# Run the border detection
def isBorder( pt ):
result = []
# calculate the distance to min/max
min_x_dst = abs(min_x - pt[0])
max_x_dst = abs(max_x - pt[0])
min_y_dst = abs(min_y - pt[1])
max_y_dst = abs(max_y - pt[1])
if min_x_dst <= 1 :
result.append("min_x")
if max_x_dst <= 1 :
result.append("max_x")
if min_y_dst <= 1 :
result.append("min_y")
if max_y_dst <= 1 :
result.append("max_y")
return result
deleteList = []
for i in range(len(odd_indices) - 1) :
ind = odd_indices[i]
pt = pl[ind]
nextpt = pl[ind+1]
# Early skip black points
if 0 == pt[2] or 0 == nextpt[2]:
continue
pt_is_bord = isBorder(pt)
nextpt_is_bord = isBorder(nextpt)
if 0 == len(pt_is_bord) or 0 == len(nextpt_is_bord):
continue
#print( "{} and {} are border.".format(pt,nextpt))
deleteList.append(ind)
deleteList.append(ind+1)
deleteList = sorted(set(deleteList), reverse=True)
for i in deleteList:
pl[i] = [pl[i][0],pl[i][1],0]
item["points_list"] = pl
item["created_at"] = time.time()
r.hset("images",hash_name, json.dumps(item))
print("Handled image {}".format(hash_name))
data = r.lpop('image-convert')
except Exception as e:
print("woops",e)
break