Compare commits

..

4 Commits

8 changed files with 810 additions and 697 deletions

View File

@ -1,4 +1,3 @@
use std::io::_print;
/**
# Populate Redis Example
@ -7,28 +6,30 @@ use std::io::_print;
$ cargo run --example populate_redis
**/
use redis::{
//RedisResult,
Client,
Commands,
Connection,
//RedisResult,
Client,
Commands,
Connection,
};
fn do_something() -> redis::RedisResult<()> {
let client = Client::open("redis://127.0.0.1/")?;
let mut con: Connection = client.get_connection()?;
let _ = con.set("/clientkey", "/pl/0/")?;
let _ = con.set("/EDH/0", "[[1.0, 0.0, 0.0],\n [ 0.0, 1.0, 0.0],\n [ 0.0, 0.0, 1.0]]")?;
let _ = con.set("/kpps/0", "5000")?;
let _ = con.set("/intensity/0", "255")?;
let _ = con.set("/pl/0/0", "[(1000, 2000, 0), (1000, 1000, 65535), (2000, 1000, 65535), (2000, 2000, 65535), (1000, 2000, 65535)]")?;
Ok(())
let client = Client::open("redis://127.0.0.1/")?;
let mut con: Connection = client.get_connection()?;
let _ = con.set("/clientkey", "/pl/0/")?;
let _ = con.set(
"/EDH/0",
"[[1.0, 0.0, 0.0],\n [ 0.0, 1.0, 0.0],\n [ 0.0, 0.0, 1.0]]",
)?;
let _ = con.set("/kpps/0", "5000")?;
let _ = con.set("/intensity/0", "255")?;
let _ = con.set("/pl/0/0", "[(1000, 2000, 0), (1000, 1000, 65535), (2000, 1000, 65535), (2000, 2000, 65535), (1000, 2000, 65535)]")?;
Ok(())
}
fn main() {
match do_something() {
Err(err) => println!("Something wrong occured: {:?}", err),
Ok(..) => println!("Successfully inserted content in Redis")
}
match do_something() {
Err(err) => println!("Something wrong occured: {:?}", err),
Ok(..) => println!("Successfully inserted content in Redis"),
}
}

View File

@ -1,42 +1,40 @@
///
/// $ cargo run --example simple_client
///
use redis::{
//RedisResult,
Client,
Commands,
Connection,
};
use std::thread::sleep;
use std::time::{Duration, Instant};
use std::time::Instant;
const SCALE: f32 = 20.0;
fn do_something() -> redis::RedisResult<()> {
let client = Client::open("redis://127.0.0.1/")?;
let mut con: Connection = client.get_connection()?;
let start = Instant::now();
loop {
let elapsed = start.elapsed();
let time = 60.0 * elapsed.as_millis() as f32 / 1000.0;
let elapsed = start.elapsed();
let time = 60.0 * elapsed.as_millis() as f32 / 5_000.0;
let mut v : Vec<(f32,f32,u32)> = vec![];
for i in 0..128 {
let a = (time + i as f32) / 128.0 * std::f32::consts::PI * 2.0;
let r = 1200.0 + (a*5.0).cos() * (500.0 * (time/5.0).cos());
let mut v: Vec<(f32, f32, u32)> = vec![];
let x = a.cos() * r;
let y = a.sin() * r;
let col = if i % 8 < 4 {
0x000000ff
} else {
0x00ff0000
};
v.push((x,y,col));
}
// println!("{:?}", v);
let _ = con.set("/pl/0/0", format!("{:?}", v))?;
for i in 0..128 {
let a = (time + i as f32) / 128.0 * std::f32::consts::PI * 2.0;
let r = 24.0 * SCALE + (a * 5.0).cos() * (10.0 * SCALE * (time / 5.0).cos());
let x = a.cos() * r;
let y = a.sin() * r;
let col = if i % 8 < 4 { 0x000000ff } else { 0x00ff0000 };
v.push((x, y, col));
}
// println!("{:?}", v);
let _ = con.set("/pl/0/0", format!("{:?}", v))?;
sleep(Duration::from_millis(100));
}
// Ok(())
}

View File

@ -1,15 +1,15 @@
mod helios;
mod dummy;
mod etherdream;
mod helios;
use std::fmt;
use crate::conf::{Conf, DacFamily /*EtherDreamConf, HeliosConf*/};
use crate::device::helios::HeliosDevice;
use crate::device::dummy::DummyDevice;
use crate::device::etherdream::EtherdreamDevice;
use crate::device::helios::HeliosDevice;
use crate::errors::LJResult;
use crate::point::Point;
use serde::Serialize;
use crate::device::etherdream::EtherdreamDevice;
use std::fmt;
/*
self.protocol_version,
@ -26,24 +26,24 @@ self.point_count
#[repr(u8)]
#[derive(Debug, PartialEq, Serialize, Copy, Clone)]
pub enum PlaybackState {
IDLE = 0,
PREPARE = 1,
PLAYING = 2
IDLE = 0,
PREPARE = 1,
PLAYING = 2,
}
impl fmt::Display for PlaybackState {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{:?}", self)
}
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{:?}", self)
}
}
#[derive(Debug)]
pub struct Status {
pub last_traced_at: String,
pub properties: Vec<String>,
pub playback_state: PlaybackState,
pub capacity: usize,
pub lack: String,
pub last_traced_at: String,
pub properties: Vec<String>,
pub playback_state: PlaybackState,
pub capacity: usize,
pub lack: String,
}
// /lstt/lasernumber etherdream last_status.playback_state (0: idle 1: prepare 2: playing)
@ -51,21 +51,17 @@ pub struct Status {
// /lack/lasernumber "a": ACK "F": Full "I": invalid. 64 or 35 for no connection.
pub trait Device {
fn status(&mut self) -> Status;
fn draw(
&mut self,
frame: Vec<Point>,
speed: u32,
) -> LJResult<()>;
fn stop(&mut self) -> LJResult<()>;
fn grid(&mut self) -> Vec<Point>;
fn status(&mut self) -> Status;
fn draw(&mut self, frame: Vec<Point>, speed: u32) -> LJResult<()>;
fn stop(&mut self) -> LJResult<()>;
fn grid(&mut self) -> Vec<Point>;
}
pub fn device_factory(config: &Conf) -> LJResult<Box<dyn Device>> {
let device: Box<dyn Device> = match &config.dac {
DacFamily::Helios(conf) => Box::new(HeliosDevice::new(conf)?),
DacFamily::Etherdream( conf) => Box::new( EtherdreamDevice::new(conf)?),
DacFamily::Dummy => Box::new(DummyDevice::new()?)
};
Ok(device)
let device: Box<dyn Device> = match &config.dac {
DacFamily::Helios(conf) => Box::new(HeliosDevice::new(conf)?),
DacFamily::Etherdream(conf) => Box::new(EtherdreamDevice::new(conf)?),
DacFamily::Dummy => Box::new(DummyDevice::new()?),
};
Ok(device)
}

View File

@ -1,308 +1,369 @@
#[warn(unused_imports)]
use log::{ debug, info, warn};
use log::{debug, info, warn};
use chrono::{DateTime, Utc};
use ether_dream::dac::stream::{connect, CommunicationError};
use ether_dream::dac::{Playback, Stream};
use std::net::SocketAddr;
use std::thread::sleep;
use ether_dream::dac::stream::{CommunicationError, connect};
use ether_dream::dac::{Playback, Stream};
use chrono::{DateTime, Utc};
use std::time;
use std::time::{Duration, SystemTime};
use crate::conf::EtherDreamConf;
use crate::device::{Device, Status, PlaybackState};
use crate::device::{Device, PlaybackState, Status};
use crate::errors::{LJError, LJResult};
use crate::point::{Color, Point};
use ether_dream::protocol::{DacBroadcast, DacResponse};
#[warn(dead_code)]
pub struct EtherdreamDevice {
pub conf: EtherDreamConf,
dac: DacBroadcast,
stream: Stream,
conf: EtherDreamConf,
dac: DacBroadcast,
stream: Stream,
// "a": ACK "F": Full "I": invalid. 64 or 35 for no connection.
// /// The previous command was accepted.
// pub const ACK: u8 = 0x61;
// /// The write command could not be performed because there was not enough buffer space when it
// /// was received.
// pub const NAK_FULL: u8 = 0x46;
// /// The command contained an invalid `command` byte or parameters.
// pub const NAK_INVALID: u8 = 0x49;
// /// An emergency-stop condition still exists.
// pub const NAK_STOP_CONDITION: u8 = 0x21;
// }
dac_response: u8,
// "a": ACK "F": Full "I": invalid. 64 or 35 for no connection.
// /// The previous command was accepted.
// pub const ACK: u8 = 0x61;
// /// The write command could not be performed because there was not enough buffer space when it
// /// was received.
// pub const NAK_FULL: u8 = 0x46;
// /// The command contained an invalid `command` byte or parameters.
// pub const NAK_INVALID: u8 = 0x49;
// /// An emergency-stop condition still exists.
// pub const NAK_STOP_CONDITION: u8 = 0x21;
// }
dac_response: u8,
chunk_size: usize,
cool_down: Duration, // in milisecs
}
impl EtherdreamDevice {
pub fn new(conf: &EtherDreamConf) -> LJResult<Self> {
let (dac, _source_address, stream) = EtherdreamDevice::connect(conf)?;
Ok(Self {
conf: (*conf).clone(),
dac,
stream,
dac_response: DacResponse::ACK,
})
}
fn connect(conf: &EtherDreamConf) -> LJResult<(DacBroadcast, SocketAddr, Stream)> {
let ip = &conf.ip;
let dac_broadcast = ether_dream::recv_dac_broadcasts()?;
dac_broadcast.set_timeout(Some(time::Duration::new(10, 0)))?;
info!("Attempting to get DAC broadcast...");
let broadcast = dac_broadcast
.take(3)
.filter_map(|result| {
match result {
Err(err) => {
warn!( "Failed to find a valid DAC via broadcast. Error: {:?}", err);
info!( "Retrying...");
None
}
Ok((dac, source_addr)) => {
info!("Valid broadcast, source_addr: {}", source_addr);
if source_addr.is_ipv6() {
warn!("Broadcast ignored: ipv6 address.");
return None;
}
let src_ip = source_addr.ip().to_string();
if &src_ip != ip {
warn!("Broadcast ignored: expected {ip}, got: {src_ip} ");
return None;
}
Some(Ok((dac, source_addr)))
}
}
})
.next()
.expect("Failed to receive broadcast.");
match broadcast {
Err(err) => {
Err(Box::new(LJError::EtherdreamConnectError(err)))
}
Ok((dac, source_addr)) => {
info!("Trying to open TCP stream...");
let stream = EtherdreamDevice::get_tcp_stream(&dac, &source_addr)?;
info!("Finished configuring DAC and TCP stream.");
Ok((dac, source_addr, stream))
}
}
}
pub fn new(conf: &EtherDreamConf) -> LJResult<Self> {
let (dac, _source_address, stream) = EtherdreamDevice::connect(conf)?;
fn get_tcp_stream(dac: &DacBroadcast, source_address: &SocketAddr) -> LJResult<Stream> {
let mut stream = connect(dac, source_address.ip())?;
match stream
let chunk_size = dac.buffer_capacity / 10;
Ok(Self {
conf: (*conf).clone(),
dac,
stream,
dac_response: DacResponse::ACK,
chunk_size: chunk_size.into(),
cool_down: Duration::from_millis(20),
})
}
fn connect(conf: &EtherDreamConf) -> LJResult<(DacBroadcast, SocketAddr, Stream)> {
let ip = &conf.ip;
let dac_broadcast = ether_dream::recv_dac_broadcasts()?;
dac_broadcast.set_timeout(Some(time::Duration::new(10, 0)))?;
info!("Attempting to get DAC broadcast...");
let broadcast = dac_broadcast
.take(3)
.filter_map(|result| match result {
Err(err) => {
warn!("Failed to find a valid DAC via broadcast. Error: {:?}", err);
info!("Retrying...");
None
}
Ok((dac, source_addr)) => {
info!("Valid broadcast, source_addr: {}", source_addr);
if source_addr.is_ipv6() {
warn!("Broadcast ignored: ipv6 address.");
return None;
}
let src_ip = source_addr.ip().to_string();
if &src_ip != ip {
warn!("Broadcast ignored: expected {ip}, got: {src_ip} ");
return None;
}
Some(Ok((dac, source_addr)))
}
})
.next()
.expect("Failed to receive broadcast.");
match broadcast {
Err(err) => Err(Box::new(LJError::EtherdreamConnectError(err))),
Ok((dac, source_addr)) => {
info!("Trying to open TCP stream...");
let stream = EtherdreamDevice::get_tcp_stream(&dac, &source_addr)?;
info!("Finished configuring DAC and TCP stream.");
Ok((dac, source_addr, stream))
}
}
}
fn get_tcp_stream(dac: &DacBroadcast, source_address: &SocketAddr) -> LJResult<Stream> {
let mut stream = connect(dac, source_address.ip())?;
match stream
.queue_commands()
.prepare_stream()
.submit() {
Err(err) => warn!("err occurred when submitting PREPARE_STREAM command and listening for response: {}",err),
Ok(_) => info!("Prepared Stream.")
}
// If we want to create an animation (in our case a moving sine wave) we need a frame rate.
let frames_per_second = 60.0;
// Lets use the DAC at an eighth the maximum scan rate.
let points_per_second = stream.dac().max_point_rate / 32;
// Determine the number of points per frame given our target frame and point rates.
let points_per_frame = (points_per_second as f32 / frames_per_second) as u16;
// If we want to create an animation (in our case a moving sine wave) we need a frame rate.
let frames_per_second = 60.0;
// Lets use the DAC at an eighth the maximum scan rate.
let points_per_second = stream.dac().max_point_rate / 32;
// Determine the number of points per frame given our target frame and point rates.
let points_per_frame = (points_per_second as f32 / frames_per_second) as u16;
let mut sine_wave = SineWave {
point: 0,
points_per_frame,
frames_per_second,
};
let mut sine_wave = SineWave {
point: 0,
points_per_frame,
frames_per_second,
};
match stream
.queue_commands()
.data(sine_wave.by_ref().take(400))
// .data(begin_list.into_iter().take(400 as usize))
.begin(0, points_per_second)
.submit() {
Err(err) => warn!("err occurred when submitting first data: {}",err),
Ok(_) => info!("Sent first data to Etherdream.")
}
match stream
.queue_commands()
.data(sine_wave.by_ref().take(400))
// .data(begin_list.into_iter().take(400 as usize))
.begin(0, points_per_second)
.submit()
{
Err(err) => warn!("err occurred when submitting first data: {}", err),
Ok(_) => info!("Sent first data to Etherdream."),
}
Ok(stream)
}
Ok(stream)
}
fn points_capacity(&self) -> usize {
/***
Determine the number of points needed to fill the DAC.
***/
// Fixme thread 'main' panicked at 'attempt to subtract with overflow', src/device/etherdream.rs:144:24
let n_points = self.dac.buffer_capacity as usize - self.stream.dac().dac.status.buffer_fullness as usize - 1;
n_points
}
fn points_capacity(&self) -> usize {
/***
Determine the number of points needed to fill the DAC.
***/
// Fixme thread 'main' panicked at 'attempt to subtract with overflow', src/device/etherdream.rs:144:24
let n_points = self.dac.buffer_capacity as i64
- self.stream.dac().dac.status.buffer_fullness as i64
- 1;
n_points.max(0) as usize
}
fn ping(&mut self) -> LJResult<()> {
Ok(self.stream.queue_commands().ping().submit()?)
}
fn ping(&mut self) -> LJResult<()> {
Ok(self.stream.queue_commands().ping().submit()?)
}
}
impl Device for EtherdreamDevice {
fn status(&mut self) -> Status {
let playback_state = match self.stream.dac().dac.status.playback {
Playback::Idle => PlaybackState::IDLE,
Playback::Prepared => PlaybackState::PREPARE,
Playback::Playing => PlaybackState::PLAYING,
};
let now = SystemTime::now();
let now: DateTime<Utc> = now.into();
let now = now.to_rfc3339();
fn status(&mut self) -> Status {
let playback_state = match self.stream.dac().dac.status.playback {
Playback::Idle => PlaybackState::IDLE,
Playback::Prepared => PlaybackState::PREPARE,
Playback::Playing => PlaybackState::PLAYING,
};
let now = SystemTime::now();
let now: DateTime<Utc> = now.into();
let now = now.to_rfc3339();
Status {
last_traced_at: now,
properties: vec!["foo".to_string()],
playback_state,
capacity: self.points_capacity(),
lack: self.dac_response.to_string(),
}
// debug!("Dac Status: {:?} ", status );
// debug!("Etherdream Dac {:?} ", self.dac );
// debug!("Stream dac{:?}", self.stream.dac());
// status
}
Status {
last_traced_at: now,
properties: vec!["foo".to_string()],
playback_state,
capacity: self.points_capacity(),
lack: self.dac_response.to_string(),
}
// debug!("Dac Status: {:?} ", status );
// debug!("Etherdream Dac {:?} ", self.dac );
// debug!("Stream dac{:?}", self.stream.dac());
// status
}
fn draw(&mut self,
line: Vec<Point>,
_speed: u32,
) -> LJResult<()> {
let chunk_size = 64;
let points_iter = line.into_iter();
for chunk in points_iter.as_slice().chunks(chunk_size){
debug!("New chunk length: {:?}", chunk.len());
loop {
let capacity = self.points_capacity();
if chunk.len() > capacity {
debug!("Sleep, capacity : {:?}", capacity);
// Sleep for 1/100th of a sec
sleep(Duration::new( 0, 10000000));
self.ping()?;
} else {
break;
}
}
debug!("drawing");
match self.stream
.queue_commands()
.data(
chunk.iter()
.map(|point| (*point).into())
.take(chunk_size)
)
.submit() {
Err(err) => {
// We should account for
// 'Broken pipe (os error 32)'
// Connection reset by peer (os error 104)
self.dac_response = match err {
CommunicationError::Io(err) => {
warn!("IO ERROR while drawing: '{}'",err);
DacResponse::ACK
}
CommunicationError::Protocol(err) => {
warn!("Protocol ERROR while drawing: '{}'",err);
DacResponse::ACK
}
CommunicationError::Response(err) => {
warn!("Response ERROR while drawing: '{}'",err);
err.response.response
}
};
}
Ok(_) => {
self.dac_response = DacResponse::ACK;
// debug!("Draw is ok");
}
};
}
Ok(())
}
fn draw(&mut self, line: Vec<Point>, _speed: u32) -> LJResult<()> {
let points_iter = line.into_iter();
for chunk in points_iter.as_slice().chunks(self.chunk_size) {
debug!("New chunk length: {:?}", chunk.len());
debug!("Point Cap: {}", self.points_capacity());
debug!("drawing");
let mut cool_down = self.cool_down;
let mut i = 0;
while self.points_capacity() < chunk.len() {
debug!(
"Buffer full, waiting... (Point Cap: {}), cool_down: {:?}",
self.points_capacity(),
self.cool_down
);
sleep(cool_down);
self.ping()?;
if i > 0 {
cool_down *= 2;
}
i += 1;
}
if i > 1 {
info!(
"Cool_down adjusted from {:?} to {:?}",
self.cool_down, cool_down
);
self.cool_down = cool_down;
}
fn stop(&mut self) -> LJResult<()> {
info!("Stopping Etherdream device...");
match self.stream
.queue_commands()
.stop()
.submit()
{
Err(err) => {
warn!("Failed to stop EtherDream device with error {:?}", err);
Err(Box::new(err))
}
Ok(_) => {
info!("Sucessfully closed EtherDream device.");
Ok(())
}
}
}
match self
.stream
.queue_commands()
.data(
chunk
.iter()
.map(|point| (*point).into())
.take(self.chunk_size),
)
.submit()
{
Err(err) => {
// We should account for
// 'Broken pipe (os error 32)'
// Connection reset by peer (os error 104)
self.dac_response = match err {
CommunicationError::Io(err) => {
warn!("IO ERROR while drawing: '{}'", err);
DacResponse::ACK
}
CommunicationError::Protocol(err) => {
warn!("Protocol ERROR while drawing: '{}'", err);
DacResponse::ACK
}
CommunicationError::Response(err) => {
warn!("Response ERROR while drawing: '{}'", err);
err.response.response
}
};
}
Ok(_) => {
self.dac_response = DacResponse::ACK;
}
}
}
Ok(())
}
fn grid(&mut self) -> Vec<Point> {
let dim_mid = 16000.0;
let dim_max = 32000.0;
let col_min = Color { r: 0, g: 0, b: 0 };
let col_max = Color { r: 255, g: 255, b: 255 };
fn stop(&mut self) -> LJResult<()> {
info!("Stopping Etherdream device...");
match self.stream.queue_commands().stop().submit() {
Err(err) => {
warn!("Failed to stop EtherDream device with error {:?}", err);
Err(Box::new(err))
}
Ok(_) => {
info!("Sucessfully closed EtherDream device.");
Ok(())
}
}
}
vec![
Point { x: -dim_max, y: dim_max, color: col_min },
Point { x: -dim_max, y: dim_max, color: col_max },
Point { x: dim_max, y: dim_max, color: col_max },
Point { x: dim_max, y: -dim_max, color: col_max },
Point { x: -dim_max, y: -dim_max, color: col_max },
Point { x: -dim_max, y: -dim_mid, color: col_min },
Point { x: -dim_mid, y: dim_mid, color: col_min },
Point { x: -dim_mid, y: dim_mid, color: col_max },
Point { x: dim_mid, y: dim_mid, color: col_max },
Point { x: dim_mid, y: -dim_mid, color: col_max },
Point { x: -dim_mid, y: -dim_mid, color: col_max },
Point { x: -dim_mid, y: -dim_mid, color: col_min },
]
}
fn grid(&mut self) -> Vec<Point> {
let dim_mid = 16000.0;
let dim_max = 32000.0;
let col_min = Color { r: 0, g: 0, b: 0 };
let col_max = Color {
r: 255,
g: 255,
b: 255,
};
vec![
Point {
x: -dim_max,
y: dim_max,
color: col_min,
},
Point {
x: -dim_max,
y: dim_max,
color: col_max,
},
Point {
x: dim_max,
y: dim_max,
color: col_max,
},
Point {
x: dim_max,
y: -dim_max,
color: col_max,
},
Point {
x: -dim_max,
y: -dim_max,
color: col_max,
},
Point {
x: -dim_max,
y: -dim_mid,
color: col_min,
},
Point {
x: -dim_mid,
y: dim_mid,
color: col_min,
},
Point {
x: -dim_mid,
y: dim_mid,
color: col_max,
},
Point {
x: dim_mid,
y: dim_mid,
color: col_max,
},
Point {
x: dim_mid,
y: -dim_mid,
color: col_max,
},
Point {
x: -dim_mid,
y: -dim_mid,
color: col_max,
},
Point {
x: -dim_mid,
y: -dim_mid,
color: col_min,
},
]
}
}
// An iterator that endlessly generates a sine wave of DAC points.
//
// The sine wave oscillates at a rate of once per second.
struct SineWave {
point: u32,
points_per_frame: u16,
frames_per_second: f32,
point: u32,
points_per_frame: u16,
frames_per_second: f32,
}
impl Iterator for SineWave {
type Item = ether_dream::protocol::DacPoint;
fn next(&mut self) -> Option<Self::Item> {
let coloured_points_per_frame = self.points_per_frame - 1;
let i = (self.point % self.points_per_frame as u32) as u16;
let hz = 1.0;
let fract = i as f32 / coloured_points_per_frame as f32;
let phase = (self.point as f32 / coloured_points_per_frame as f32) / self.frames_per_second;
let amp = (hz * (fract + phase) * 2.0 * std::f32::consts::PI).sin();
let (r, g, b) = match i {
i if i == coloured_points_per_frame || i < 13 => (0, 0, 0),
_ => (u16::MAX, u16::MAX, u16::MAX),
};
let x_min = i16::MIN;
let x_max = i16::MAX;
let x = (x_min as f32 + fract * (x_max as f32 - x_min as f32)) as i16;
let y = (amp * x_max as f32) as i16;
let control = 0;
let (u1, u2) = (0, 0);
let p = ether_dream::protocol::DacPoint {
control,
x,
y,
i,
r,
g,
b,
u1,
u2,
};
// debug!("{:?}",p);
self.point += 1;
Some(p)
}
type Item = ether_dream::protocol::DacPoint;
fn next(&mut self) -> Option<Self::Item> {
let coloured_points_per_frame = self.points_per_frame - 1;
let i = (self.point % self.points_per_frame as u32) as u16;
let hz = 1.0;
let fract = i as f32 / coloured_points_per_frame as f32;
let phase = (self.point as f32 / coloured_points_per_frame as f32) / self.frames_per_second;
let amp = (hz * (fract + phase) * 2.0 * std::f32::consts::PI).sin();
let (r, g, b) = match i {
i if i == coloured_points_per_frame || i < 13 => (0, 0, 0),
_ => (u16::MAX, u16::MAX, u16::MAX),
};
let x_min = i16::MIN;
let x_max = i16::MAX;
let x = (x_min as f32 + fract * (x_max as f32 - x_min as f32)) as i16;
let y = (amp * x_max as f32) as i16;
let control = 0;
let (u1, u2) = (0, 0);
let p = ether_dream::protocol::DacPoint {
control,
x,
y,
i,
r,
g,
b,
u1,
u2,
};
// debug!("{:?}",p);
self.point += 1;
Some(p)
}
}

View File

@ -1,108 +1,158 @@
use std::time::SystemTime;
use crate::conf::HeliosConf;
use crate::device::{Device, PlaybackState, Status};
use crate::errors::{LJError, LJResult};
use crate::point::{Color, Point};
use chrono::{DateTime, Utc};
use helios_dac::{
// Coordinate,
// Color,
DeviceStatus,
Frame,
// Point as HeliosPoint,
};
///
/// Configure udev:
/// https://github.com/Grix/helios_dac/blob/master/docs/udev_rules_for_linux.md
///
use helios_dac::{NativeHeliosDac, NativeHeliosDacController};
use helios_dac::{
// Coordinate,
// Color,
DeviceStatus,
Frame,
// Point as HeliosPoint,
};
use crate::conf::HeliosConf;
use crate::device::{Device, Status, PlaybackState};
use crate::errors::{LJError, LJResult};
use crate::point::{Color, Point};
use chrono::{DateTime, Utc};
use std::time::SystemTime;
#[allow(dead_code)]
pub struct HeliosDevice {
pub conf: HeliosConf,
dac: NativeHeliosDac,
sent_points: u16,
state: PlaybackState,
lack: String,
last_traced_at: String,
pub conf: HeliosConf,
dac: NativeHeliosDac,
sent_points: u16,
state: PlaybackState,
lack: String,
last_traced_at: String,
}
impl HeliosDevice {
pub fn new(conf: &HeliosConf) -> LJResult<Self> {
let id = conf.id;
let controller = NativeHeliosDacController::new()?;
let devices = controller.list_devices()?;
let Some(device) = devices.into_iter().nth(id as usize) else {
return Err(Box::new(LJError::HeliosDeviceMissing));
};
let dac = device.open()?;
let now = SystemTime::now();
let now: DateTime<Utc> = now.into();
let last_traced_at = now.to_rfc3339();
pub fn new(conf: &HeliosConf) -> LJResult<Self> {
let id = conf.id;
let controller = NativeHeliosDacController::new()?;
let devices = controller.list_devices()?;
let Some(device) = devices.into_iter().nth(id as usize) else {
return Err(Box::new(LJError::HeliosDeviceMissing));
};
let dac = device.open()?;
let now = SystemTime::now();
let now: DateTime<Utc> = now.into();
let last_traced_at = now.to_rfc3339();
Ok(Self {
conf: (*conf).clone(),
dac,
sent_points: 0,
state: PlaybackState::PREPARE,
lack: "".to_string(),
last_traced_at,
})
}
Ok(Self {
conf: (*conf).clone(),
dac,
sent_points: 0,
state: PlaybackState::PREPARE,
lack: "".to_string(),
last_traced_at,
})
}
}
impl Device for HeliosDevice {
fn status(&mut self) -> Status {
let lack = self.lack.clone();
Status {
last_traced_at: self.last_traced_at.clone(),
properties: vec!["foo".to_string()],
playback_state: self.state,
capacity: self.sent_points as usize,
lack,
}
}
fn status(&mut self) -> Status {
let lack = self.lack.clone();
Status {
last_traced_at: self.last_traced_at.clone(),
properties: vec!["foo".to_string()],
playback_state: self.state,
capacity: self.sent_points as usize,
lack,
}
}
fn draw(&mut self,
line: Vec<Point>,
speed: u32,
) -> LJResult<()> {
self.state = PlaybackState::IDLE;
while let Ok(DeviceStatus::NotReady) = self.dac.status() {}
self.state = PlaybackState::PLAYING;
fn draw(&mut self, line: Vec<Point>, speed: u32) -> LJResult<()> {
self.state = PlaybackState::IDLE;
while let Ok(DeviceStatus::NotReady) = self.dac.status() {}
self.state = PlaybackState::PLAYING;
let points: Vec<helios_dac::Point> = line.into_iter().map(|p| p.into()).collect();
let frame = Frame::new(speed, points.clone());
self.dac.write_frame(frame.clone())?;
self.sent_points = points.len() as u16;
self.last_traced_at = Utc::now().to_rfc3339();
Ok(())
}
let points: Vec<helios_dac::Point> = line.into_iter().map(|p| p.into()).collect();
let frame = Frame::new(speed, points.clone());
self.dac.write_frame(frame.clone())?;
self.sent_points = points.len() as u16;
self.last_traced_at = Utc::now().to_rfc3339();
Ok(())
}
fn stop(&mut self) -> LJResult<()> {
self.dac.stop()?;
Ok(())
}
fn stop(&mut self) -> LJResult<()> {
self.dac.stop()?;
Ok(())
}
fn grid(&mut self) -> Vec<Point> {
let dim_min = 0 as f32;
let dim_mid = 2047.0;
let dim_max = 4095.0;
let col_min = Color { r: 0, g: 0, b: 0 };
let col_max = Color { r: 255, g: 255, b: 255 };
fn grid(&mut self) -> Vec<Point> {
let dim_min = 0 as f32;
let dim_mid = 2047.0;
let dim_max = 4095.0;
let col_min = Color { r: 0, g: 0, b: 0 };
let col_max = Color {
r: 255,
g: 255,
b: 255,
};
vec![
Point { x: dim_min, y: dim_max, color: col_min },
Point { x: dim_min, y: dim_max, color: col_max },
Point { x: dim_max, y: dim_max, color: col_max },
Point { x: dim_max, y: dim_min, color: col_max },
Point { x: dim_min, y: dim_min, color: col_max },
Point { x: dim_min, y: dim_min, color: col_min },
Point { x: dim_min, y: dim_mid, color: col_min },
Point { x: dim_min, y: dim_mid, color: col_max },
Point { x: dim_mid, y: dim_mid, color: col_max },
Point { x: dim_mid, y: dim_min, color: col_max },
Point { x: dim_min, y: dim_min, color: col_max },
Point { x: dim_min, y: dim_min, color: col_min },
]
}
vec![
Point {
x: dim_min,
y: dim_max,
color: col_min,
},
Point {
x: dim_min,
y: dim_max,
color: col_max,
},
Point {
x: dim_max,
y: dim_max,
color: col_max,
},
Point {
x: dim_max,
y: dim_min,
color: col_max,
},
Point {
x: dim_min,
y: dim_min,
color: col_max,
},
Point {
x: dim_min,
y: dim_min,
color: col_min,
},
Point {
x: dim_min,
y: dim_mid,
color: col_min,
},
Point {
x: dim_min,
y: dim_mid,
color: col_max,
},
Point {
x: dim_mid,
y: dim_mid,
color: col_max,
},
Point {
x: dim_mid,
y: dim_min,
color: col_max,
},
Point {
x: dim_min,
y: dim_min,
color: col_max,
},
Point {
x: dim_min,
y: dim_min,
color: col_min,
},
]
}
}

View File

@ -1,200 +1,204 @@
mod conf;
mod device;
mod errors;
mod framerate;
mod point;
///
/// Configure udev:
/// https://github.com/Grix/helios_dac/blob/master/docs/udev_rules_for_linux.md
///
mod redis_ctrl;
mod conf;
mod errors;
mod point;
mod transformer;
mod device;
mod worldstate;
mod framerate;
use conf::Conf;
use device::device_factory;
use env_logger::Builder;
use errors::LJResult;
use framerate::Framerate;
use log::{/* warn, */ error, info, LevelFilter};
use point::{Color, Point};
use redis_ctrl::{Order, RedisCtrl};
use std::io::Read;
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::Arc;
use redis_ctrl::{RedisCtrl, Order};
use conf::Conf;
use errors::LJResult;
use point::{Point, Color};
use transformer::Transformers;
use log::{LevelFilter, info, /* warn, */ error};
use env_logger::Builder;
use worldstate::WorldState;
use framerate::Framerate;
const DEFAULT_CONF_FILE: &str = "settings.toml";
pub fn main() {
match run_all() {
Ok(()) => {}
Err(err) => {
error!("Error: {}", err);
}
}
match run_all() {
Ok(()) => {}
Err(err) => {
error!("Error: {}", err);
}
}
}
fn run_all() -> LJResult<()> {
// Setup handler for interrupt Signals
let running = Arc::new(AtomicBool::new(true));
let r = running.clone();
ctrlc::set_handler(move || {
r.store(false, Ordering::SeqCst);
})?;
// Setup handler for interrupt Signals
let running = Arc::new(AtomicBool::new(true));
let r = running.clone();
ctrlc::set_handler(move || {
r.store(false, Ordering::SeqCst);
})?;
// Setup configuration file and set up logs
let filename = std::env::args().nth(1).unwrap_or_else(|| {
DEFAULT_CONF_FILE.to_string()
});
// Setup configuration file and set up logs
let filename = std::env::args()
.nth(1)
.unwrap_or_else(|| DEFAULT_CONF_FILE.to_string());
let config = Conf::new(&filename);
init_logging(&config);
let config = config?;
info!("*** Starting up ***");
// read conf from stdin?
let config = if filename == "-" {
println!("Awaiting JSON config on standard input...");
let mut buff = String::new();
loop {
let mut buff2: Vec<u8> = vec![0; 4096];
let Ok(n) = std::io::stdin().read(&mut buff2) else {
panic!("read failled");
};
let s = std::str::from_utf8(&buff2[0..n]).unwrap();
buff.push_str(&s);
info!("{:?}", config);
if n == 0 || buff2[n - 1] == 0 {
let config = toml::from_str(&buff[0..buff.len() - 1])?;
break Ok(config);
}
}
} else {
Conf::new(&filename)
};
init_logging(&config);
let config = config?;
// Setup Redis Service
let mut rs = RedisCtrl::new(&config.redis_url, &config.laser_id)?;
info!("*** Starting up ***");
let mut world_state = rs.init_world_state().unwrap();
info!("WorldState: {:?}", world_state);
info!("{:?}", config);
// Setup Redis Service
let mut rs = RedisCtrl::new(&config.redis_url, &config.laser_id)?;
// Setup Laser Device based on conf
let mut tracer = device_factory(&config)?;
world_state.grid = tracer.grid();
let mut world_state = rs.init_world_state().unwrap();
info!("WorldState: {:?}", world_state);
// Setup geometry transformers on points lists
let transformers = config.get_transformers();
// Setup Laser Device based on conf
let mut tracer = device_factory(&config)?;
world_state.grid = tracer.grid();
// Setup framerate limiter
let mut framerate_handler = Framerate::new()?;
// Setup geometry transformers on points lists
let transformers = config.get_transformers();
// Dispatch based on redis requests
while running.load(Ordering::SeqCst) {
rs.set_status(tracer.status())?;
framerate_handler.handle_time()?;
let order = rs.get_order(config.laser_id)?;
match order {
Order::Draw | Order::Black | Order::Grid => {
// 0 : Draw Normal point list
// 2 : Draw BLACK point list
// 3 : Draw GRID point list
world_state.draw_black = order == Order::Black;
world_state.draw_grid = order == Order::Grid;
let frame = get_next_frame(
&config,
&transformers,
&mut rs,
&world_state,
)?;
// For now, draw all the time
tracer.draw(frame, world_state.kpps)?;
}
Order::Intensity => {
// 6 : Max Intensity Change = reread redis key /intensity
world_state.intensity = rs.get_int("intensity")?
.try_into()?;
}
Order::Edh => {
// 1 : Get the new EDH = reread redis key /EDH/lasernumber
world_state.edh = rs.get_edh()?;
}
Order::Kpps => {
// 7 : kpps change = reread redis key /kpps
world_state.kpps = rs.get_int("kpps")?;
}
Order::ClientKey => {
world_state.client_key = rs.get_client_key()?;
}
Order::ColorBalance => {
let (r, g, b) = rs.get_color_balance()?;
world_state.color_balance = Color { r, g, b };
}
Order::Resampler => {
world_state.resampler = rs.get_resampler()?;
}
_ => {
// 9 : poweroff LJ
info!("Order: {:?}", order);
}
}
}
// Setup framerate limiter
let mut framerate_handler = Framerate::new()?;
info!("Exiting, stoping device.");
tracer.stop()?;
Ok(())
// Dispatch based on redis requests
while running.load(Ordering::SeqCst) {
rs.set_status(tracer.status())?;
framerate_handler.handle_time()?;
let order = rs.get_order(config.laser_id)?;
match order {
Order::Draw | Order::Black | Order::Grid => {
// 0 : Draw Normal point list
// 2 : Draw BLACK point list
// 3 : Draw GRID point list
world_state.draw_black = order == Order::Black;
world_state.draw_grid = order == Order::Grid;
let frame = get_next_frame(&config, &transformers, &mut rs, &world_state)?;
// For now, draw all the time
tracer.draw(frame, world_state.kpps)?;
}
Order::Intensity => {
// 6 : Max Intensity Change = reread redis key /intensity
world_state.intensity = rs.get_int("intensity")?.try_into()?;
}
Order::Edh => {
// 1 : Get the new EDH = reread redis key /EDH/lasernumber
world_state.edh = rs.get_edh()?;
}
Order::Kpps => {
// 7 : kpps change = reread redis key /kpps
world_state.kpps = rs.get_int("kpps")?;
}
Order::ClientKey => {
world_state.client_key = rs.get_client_key()?;
}
Order::ColorBalance => {
let (r, g, b) = rs.get_color_balance()?;
world_state.color_balance = Color { r, g, b };
}
Order::Resampler => {
world_state.resampler = rs.get_resampler()?;
}
Order::PowerOff => {
info!("PowerOff command recieved.");
break;
}
}
}
info!("Exiting, stoping device.");
tracer.stop()?;
Ok(())
}
fn init_logging(config: &LJResult<Conf>) {
if let Ok(ref config) = config {
let level = if config.debug {
LevelFilter::Debug
} else {
LevelFilter::Info
};
let mut builder = Builder::from_default_env();
builder
.filter(None, level)
.init();
info!("Debug mode enabled from configuration file");
return;
}
info!("Logging level inherited from env");
env_logger::init();
if let Ok(ref config) = config {
let level = if config.debug {
LevelFilter::Debug
} else {
LevelFilter::Info
};
let mut builder = Builder::from_default_env();
builder.filter(None, level).init();
info!("Debug mode enabled from configuration file");
return;
}
info!("Logging level inherited from env");
env_logger::init();
}
fn get_next_frame(
config: &Conf,
transformers: &[Box<dyn Transformers>],
rs: &mut RedisCtrl,
world_state: &WorldState,
config: &Conf,
transformers: &[Box<dyn Transformers>],
rs: &mut RedisCtrl,
world_state: &WorldState,
) -> LJResult<Vec<Point>> {
let format_key = format!("{}{}",
world_state.client_key,
config.laser_id);
let format_key = format!("{}{}", world_state.client_key, config.laser_id);
// Handle the grid case
// Handle the grid case
let mut line: Vec<Point> = if world_state.draw_grid {
world_state.grid.clone()
} else {
let redis_line = rs.get_line(&format_key)?;
redis_line.into_iter()
.map(|tpl| tpl.into())
.collect()
};
let mut line: Vec<Point> = if world_state.draw_grid {
world_state.grid.clone()
} else {
let redis_line = rs.get_line(&format_key)?;
redis_line.into_iter().map(|tpl| tpl.into()).collect()
};
for transformer in transformers {
line = transformer.apply(&line, world_state);
}
for transformer in transformers {
line = transformer.apply(&line, world_state);
}
// info!("Draw Black -> {}", world_state.draw_black);
// info!("Draw Grid -> {}", world_state.draw_grid);
// info!("Draw Black -> {}", world_state.draw_black);
// info!("Draw Grid -> {}", world_state.draw_grid);
// LIMITER and BLACK
line = line.into_iter()
.map(|p| {
let color = if world_state.draw_black {
Color { r: 0, g: 0, b: 0 }
} else {
Color {
r: p.color.r.min(world_state.intensity),
g: p.color.g.min(world_state.intensity),
b: p.color.b.min(world_state.intensity),
}
};
Point {
color,
..p
}
})
.collect();
// LIMITER and BLACK
line = line
.into_iter()
.map(|p| {
let color = if world_state.draw_black {
Color { r: 0, g: 0, b: 0 }
} else {
Color {
r: p.color.r.min(world_state.intensity),
g: p.color.g.min(world_state.intensity),
b: p.color.b.min(world_state.intensity),
}
};
Point { color, ..p }
})
.collect();
//info!("Line: {:?}", line);
Ok(line)
//info!("Line: {:?}", line);
Ok(line)
}

View File

@ -1,143 +1,147 @@
use redis::{Client, Commands, Connection};
use ron::de::from_str;
use crate::device::Status;
use crate::errors::{LJError, LJResult};
use crate::worldstate::{WorldState, EDH};
use redis::{Client, Commands, Connection};
use ron::de::from_str;
// use log::info;
#[repr(u8)]
#[derive(Debug, PartialEq)]
pub enum Order {
Draw = 0,
Edh,
Black,
Grid,
Resampler,
ClientKey,
Intensity,
Kpps,
ColorBalance,
PowerOff
Draw = 0,
Edh,
Black,
Grid,
Resampler,
ClientKey,
Intensity,
Kpps,
ColorBalance,
PowerOff,
}
impl TryFrom<u8> for Order {
type Error = String;
type Error = String;
fn try_from(value: u8) -> Result<Self, Self::Error> {
use Order::*;
fn try_from(value: u8) -> Result<Self, Self::Error> {
use Order::*;
if value > 8 {
return Err("order out of range".to_string());
}
if value > 9 {
return Err("order out of range".to_string());
}
Ok(match value {
0 => Draw,
1 => Edh,
2 => Black,
3 => Grid,
4 => Resampler,
5 => ClientKey,
6 => Intensity,
7 => Kpps,
8 => ColorBalance,
9 => PowerOff,
_ => unreachable!()
})
}
Ok(match value {
0 => Draw,
1 => Edh,
2 => Black,
3 => Grid,
4 => Resampler,
5 => ClientKey,
6 => Intensity,
7 => Kpps,
8 => ColorBalance,
9 => PowerOff,
_ => unreachable!(),
})
}
}
pub type Line = Vec<(f32, f32, u32)>;
pub type Resampler = Vec<Vec<(f32,f32)>>;
pub type Resampler = Vec<Vec<(f32, f32)>>;
pub struct RedisCtrl {
pub client: Client,
pub connection: Connection,
laser_id: u8,
//pub client: Client,
pub connection: Connection,
laser_id: u8,
}
impl RedisCtrl {
pub fn new(url: &str, laser_id: &u8) -> LJResult<Self> {
let client = Client::open(url)
.map_err(LJError::RedisConnect)?;
let connection = client.get_connection()
.map_err(LJError::RedisConnect)?;
Ok(RedisCtrl { client, connection, laser_id: *laser_id })
}
pub fn new(url: &str, laser_id: &u8) -> LJResult<Self> {
let client = Client::open(url).map_err(LJError::RedisConnect)?;
let connection = client.get_connection().map_err(LJError::RedisConnect)?;
Ok(RedisCtrl {
//client,
connection,
laser_id: *laser_id,
})
}
pub fn get_line(&mut self, key: &str) -> LJResult<Line> {
let val: String = self.connection.get(key)?;
let line: Line = from_str(&val)?;
Ok(line)
}
pub fn get_line(&mut self, key: &str) -> LJResult<Line> {
let val: String = self.connection.get(key)?;
let line: Line = from_str(&val)?;
Ok(line)
}
pub fn set(&mut self, key: String, value: String) -> LJResult<()> {
self.connection.set(key, value)?;
Ok(())
}
pub fn set(&mut self, key: String, value: String) -> LJResult<()> {
self.connection.set(key, value)?;
Ok(())
}
pub fn get_order(&mut self, id: u8) -> LJResult<Order> {
let path = format!("/order/{id}");
let val: u8 = self.connection.get(path.clone())?;
pub fn get_order(&mut self, id: u8) -> LJResult<Order> {
let path = format!("/order/{id}");
let val: u8 = self.connection.get(path.clone())?;
if val == 1 || val >= 4 {
self.connection.set(path, 0)?;
}
if val == 1 || val >= 4 {
self.connection.set(path, 0)?;
}
Ok(val.try_into()?)
}
Ok(val.try_into()?)
}
pub fn set_status(&mut self, status: Status) -> LJResult<()> {
let lstt_key = format!("/lstt/{}", self.laser_id);
let cap_key = format!("/cap/{}", self.laser_id);
let lack_key = format!("/lack/{}", self.laser_id);
self.set(lstt_key, status.playback_state.to_string())?;
self.set(cap_key, status.capacity.to_string())?;
self.set(lack_key, status.lack.to_string())?;
Ok(())
}
pub fn set_status(&mut self, status: Status) -> LJResult<()> {
let lstt_key = format!("/lstt/{}", self.laser_id);
let cap_key = format!("/cap/{}", self.laser_id);
let lack_key = format!("/lack/{}", self.laser_id);
self.set(lstt_key, status.playback_state.to_string())?;
self.set(cap_key, status.capacity.to_string())?;
self.set(lack_key, status.lack.to_string())?;
Ok(())
}
pub fn init_world_state(&mut self) -> LJResult<WorldState> {
Ok(WorldState {
client_key: self.get_client_key()?,
edh: self.get_edh()?,
kpps: self.get_int("kpps")?.try_into()?,
intensity: self.get_int("intensity")?.try_into()?,
..WorldState::default()
})
}
pub fn init_world_state(&mut self) -> LJResult<WorldState> {
Ok(WorldState {
client_key: self.get_client_key()?,
edh: self.get_edh()?,
kpps: self.get_int("kpps")?.try_into()?,
intensity: self.get_int("intensity")?.try_into()?,
..WorldState::default()
})
}
pub fn get_edh(&mut self) -> LJResult<EDH> {
// Get new EDH
let edh_key = format!("/EDH/{}", self.laser_id);
let edh: String = self.connection.get(edh_key)?;
let edh: Vec<Vec<f32>> = from_str(&edh)?;
let edh = EDH::new(edh)?;
Ok(edh)
}
pub fn get_edh(&mut self) -> LJResult<EDH> {
// Get new EDH
let edh_key = format!("/EDH/{}", self.laser_id);
let edh: String = self.connection.get(edh_key)?;
let edh: Vec<Vec<f32>> = from_str(&edh)?;
let edh = EDH::new(edh)?;
Ok(edh)
}
pub fn get_client_key(&mut self) -> LJResult<String> {
let key: String = self.connection.get("/clientkey")?;
Ok(key)
}
pub fn get_client_key(&mut self) -> LJResult<String> {
let key: String = self.connection.get("/clientkey")?;
Ok(key)
}
pub fn get_color_balance(&mut self) -> LJResult<(u8, u8, u8)> {
Ok((
self.connection.get("/red")?,
self.connection.get("/green")?,
self.connection.get("/blue")?,
))
}
pub fn get_color_balance(&mut self) -> LJResult<(u8, u8, u8)> {
Ok((
self.connection.get("/red")?,
self.connection.get("/green")?,
self.connection.get("/blue")?,
))
}
pub fn get_resampler(&mut self ) -> LJResult<Resampler> {
let val: String = self.connection.get(format!("/resampler/{}", self.laser_id))?;
let resampler : Resampler = from_str(&val)?;
Ok(resampler)
}
pub fn get_resampler(&mut self) -> LJResult<Resampler> {
let val: String = self
.connection
.get(format!("/resampler/{}", self.laser_id))?;
let resampler: Resampler = from_str(&val)?;
Ok(resampler)
}
pub fn get_int(&mut self, key: &str) -> LJResult<u32> {
// Get new Int
let fmt = format!("/{key}/{}", self.laser_id);
let val: u32 = self.connection.get(fmt)?;
Ok(val)
}
pub fn get_int(&mut self, key: &str) -> LJResult<u32> {
// Get new Int
let fmt = format!("/{key}/{}", self.laser_id);
let val: u32 = self.connection.get(fmt)?;
Ok(val)
}
}

View File

@ -1,28 +1,27 @@
use log::debug;
use crate::transformer::Transformers;
use crate::point::Point;
use crate::transformer::Transformers;
use crate::worldstate::WorldState;
use log::debug;
use serde::{Serialize, Deserialize};
use serde::{Deserialize, Serialize};
/// Converts helios Geometry to Helios
#[allow(dead_code)]
#[derive(Serialize, Deserialize, Debug, Clone, Copy)]
pub struct Intensity {
}
pub struct Intensity {}
impl Transformers for Intensity {
fn apply(&self, point_list: &[Point], ws: &WorldState) -> Vec<Point> {
// debug!("list helios {:?}", point_list);
let out = point_list.iter().map(|pt| {
Point {
x: pt.x,
y: pt.y,
color: pt.color * ws.intensity
}
}).collect();
debug!("list intensity {:?}", out);
out
}
fn apply(&self, point_list: &[Point], ws: &WorldState) -> Vec<Point> {
// debug!("list helios {:?}", point_list);
let out = point_list
.iter()
.map(|pt| Point {
x: pt.x,
y: pt.y,
color: pt.color * ws.intensity,
})
.collect();
//debug!("list intensity {:?}", out);
out
}
}