Compare commits

...

14 Commits

16 changed files with 732 additions and 223 deletions

151
examples/etherdream.rs Normal file
View File

@ -0,0 +1,151 @@
extern crate ether_dream;
use ether_dream::dac;
fn main() {
println!("Listening for an Ether Dream DAC...");
let (dac_broadcast, source_addr) = ether_dream::recv_dac_broadcasts()
.expect("failed to bind to UDP socket")
.filter_map(Result::ok)
.next()
.unwrap();
let mac_address = dac::MacAddress(dac_broadcast.mac_address);
println!(
"Discovered DAC \"{}\" at \"{}\"! Connecting...",
mac_address, source_addr
);
// Establish the TCP connection.
let mut stream = dac::stream::connect(&dac_broadcast, source_addr.ip().clone()).unwrap();
// If we want to create an animation (in our case a moving sine wave) we need a frame rate.
let frames_per_second = 60.0;
// Lets use the DAC at an eighth the maximum scan rate.
let points_per_second = stream.dac().max_point_rate / 32;
// Determine the number of points per frame given our target frame and point rates.
let points_per_frame = (points_per_second as f32 / frames_per_second) as u16;
println!(
"Preparing for playback:\n\tframe_hz: {}\n\tpoint_hz: {}\n\tpoints_per_frame: {}\n",
frames_per_second, points_per_second, points_per_frame
);
// Prepare the DAC's playback engine and await the repsonse.
stream
.queue_commands()
.prepare_stream()
.submit()
.err()
.map(|err| {
eprintln!(
"err occurred when submitting PREPARE_STREAM \
command and listening for response: {}",
err
);
});
println!("Beginning playback!");
// The sine wave used to generate points.
let mut sine_wave = SineWave {
point: 0,
points_per_frame,
frames_per_second,
};
// Queue the initial frame and tell the DAC to begin producing output.
let n_points = points_to_generate(stream.dac());
stream
.queue_commands()
.data(sine_wave.by_ref().take(n_points))
.begin(0, points_per_second)
.submit()
.err()
.map(|err| {
eprintln!(
"err occurred when submitting initial DATA and BEGIN \
commands and listening for response: {}",
err
);
});
eprintln!("Stream dac{:?}", stream.dac());
// Loop and continue to send points forever.
loop {
// Determine how many points the DAC can currently receive.
let n_points = points_to_generate(stream.dac());
if let Err(err) = stream
.queue_commands()
.data(sine_wave.by_ref().take(n_points))
.submit()
{
eprintln!(
"err occurred when submitting DATA command and listening \
for response: {}",
err
);
break;
}
}
// Tell the DAC to stop producing output and return to idle. Wait for the response.
//
// Note that the DAC is commanded to stop on `Drop` if this is not called and any errors
// produced are ignored.
stream
.queue_commands()
.stop()
.submit()
.expect("err occurred when submitting STOP command and listening for response");
}
// Determine the number of points needed to fill the DAC.
fn points_to_generate(dac: &ether_dream::dac::Dac) -> usize {
dac.buffer_capacity as usize - 1 - dac.status.buffer_fullness as usize
}
// An iterator that endlessly generates a sine wave of DAC points.
//
// The sine wave oscillates at a rate of once per second.
struct SineWave {
point: u32,
points_per_frame: u16,
frames_per_second: f32,
}
impl Iterator for SineWave {
type Item = ether_dream::protocol::DacPoint;
fn next(&mut self) -> Option<Self::Item> {
let coloured_points_per_frame = self.points_per_frame - 1;
let i = (self.point % self.points_per_frame as u32) as u16;
let hz = 1.0;
let fract = i as f32 / coloured_points_per_frame as f32;
let phase = (self.point as f32 / coloured_points_per_frame as f32) / self.frames_per_second;
let amp = (hz * (fract + phase) * 2.0 * std::f32::consts::PI).sin();
let (r, g, b) = match i {
i if i == coloured_points_per_frame || i < 13 => (0, 0, 0),
_ => (std::u16::MAX, std::u16::MAX, std::u16::MAX),
};
let x_min = std::i16::MIN;
let x_max = std::i8::MAX as i16;
let x = (x_min as f32 + fract * (x_max as f32 - x_min as f32)) as i16;
let y = (amp * x_max as f32) as i16;
let control = 0;
let (u1, u2) = (0, 0);
let p = ether_dream::protocol::DacPoint {
control,
x,
y,
i,
r,
g,
b,
u1,
u2,
};
self.point += 1;
Some(p)
}
}

View File

@ -1,24 +1,34 @@
///
/// $ cargo run --example populate_redis
///
use std::io::_print;
/**
# Populate Redis Example
**This script simulates the redis content provided by the LJ Python / web tool**
$ cargo run --example populate_redis
**/
use redis::{
//RedisResult,
Client,
Commands,
Connection,
//RedisResult,
Client,
Commands,
Connection,
};
fn do_something() -> redis::RedisResult<()> {
let client = Client::open("redis://127.0.0.1/")?;
let mut con: Connection = client.get_connection()?;
let client = Client::open("redis://127.0.0.1/")?;
let mut con: Connection = client.get_connection()?;
let _ = con.set("/clientkey", "/pl/0/")?;
let _ = con.set("/EDH/0", "[[1.0, 0.0, 0.0],\n [ 0.0, 1.0, 0.0],\n [ 0.0, 0.0, 1.0]]")?;
let _ = con.set("/kpps/0", "5000")?;
let _ = con.set("/intensity/0", "255")?;
Ok(())
let _ = con.set("/pl/0/0", "[(1000, 2000, 0), (1000, 1000, 65535), (2000, 1000, 65535), (2000, 2000, 65535), (1000, 2000, 65535)]")?;
Ok(())
}
fn main() {
_ = do_something();
match do_something() {
Err(err) => println!("Something wrong occured: {:?}", err),
Ok(..) => println!("Successfully inserted content in Redis")
}
}

46
examples/test.rs Normal file
View File

@ -0,0 +1,46 @@
///
/// $ cargo run --example simple_client
///
use redis::{
//RedisResult,
Client,
Commands,
Connection,
};
use std::time::Instant;
fn do_something() -> redis::RedisResult<()> {
let client = Client::open("redis://127.0.0.1/")?;
let mut con: Connection = client.get_connection()?;
let start = Instant::now();
loop {
let elapsed = start.elapsed();
let time = 60.0 * elapsed.as_millis() as f32 / 1000.0;
let mut v: Vec<(f32, f32, u32)> = vec![];
for i in 0..128 {
let a = (time + i as f32) / 128.0 * std::f32::consts::PI * 2.0;
let r = 1200.0 + (a * 5.0).cos() * (500.0 * (time / 5.0).cos());
let x = a.cos() * r;
let y = a.sin() * r;
let col = if i % 8 < 4 {
0x000000ff
} else {
0x00ff0000
};
v.push((x, y, col));
}
// println!("{:?}", v);
let _ = con.set("/pl/0/0", format!("{:?}", v))?;
}
// Ok(())
}
fn main() {
_ = do_something();
}

View File

@ -1,98 +1,106 @@
use config::Config;
use serde::{Serialize,Deserialize};
use crate::errors::{LJError,LJResult};
use serde::{Serialize, Deserialize};
use crate::errors::{LJError, LJResult};
use crate::transformer;
#[derive(Serialize, Deserialize, Debug, Clone)]
pub struct Conf {
pub laser_id: u8,
pub debug: bool,
pub redis_url: String,
pub dac: DacFamily,
#[serde(default)]
pub transformers: Vec<TransformConf>
pub laser_id: u8,
pub debug: bool,
pub redis_url: String,
pub dac: DacFamily,
#[serde(default)]
pub transformers: Vec<TransformConf>,
}
#[derive(Serialize, Deserialize, Debug, Clone)]
pub enum DacFamily {
#[serde(rename = "helios")]
Helios(HeliosConf),
#[serde(rename = "etherdream")]
Etherdream(EtherDreamConf),
#[serde(rename = "dummy")]
Dummy,
#[serde(rename = "helios")]
Helios(HeliosConf),
#[serde(rename = "etherdream")]
Etherdream(EtherDreamConf),
#[serde(rename = "dummy")]
Dummy,
}
#[derive(Serialize, Deserialize, Debug, Clone)]
pub struct HeliosConf {
pub id: u8
pub id: u8,
}
#[derive(Serialize, Deserialize, Debug, Clone)]
pub struct EtherDreamConf {
pub ip: String
pub ip: String,
}
#[derive(Serialize, Deserialize, Debug, Clone)]
pub enum TransformConf {
#[serde(rename = "translate")]
Translate(transformer::Translate),
#[serde(rename = "replicate")]
Replicate(transformer::Replicate),
#[serde(rename = "rotate")]
Rotate(transformer::Rotate),
#[serde(rename = "flip_horizontal")]
FlipH(transformer::FlipHorizontal),
#[serde(rename = "flip_vertical")]
FlipV(transformer::FlipVertical),
#[serde(rename = "grid")]
Grid(transformer::Grid),
#[serde(rename = "homography")]
Homography(transformer::Homography)
#[serde(rename = "translate")]
Translate(transformer::Translate),
#[serde(rename = "replicate")]
Replicate(transformer::Replicate),
#[serde(rename = "rotate")]
Rotate(transformer::Rotate),
#[serde(rename = "flip_horizontal")]
FlipH(transformer::FlipHorizontal),
#[serde(rename = "flip_vertical")]
FlipV(transformer::FlipVertical),
#[serde(rename = "grid")]
Grid(transformer::Grid),
#[serde(rename = "homography")]
Homography(transformer::Homography),
#[serde(rename = "helios_to_etherdream")]
HeliosToEtherdream(transformer::HeliosToEtherdream),
#[serde(rename = "intensity")]
Intensity(transformer::Intensity),
}
impl Conf {
pub fn new(path: &str) -> LJResult<Conf> {
let settings = Config::builder()
.add_source(config::File::with_name(path))
.build()?;
let conf : Conf = settings.try_deserialize().map_err(LJError::Config)?;
Ok(conf)
}
pub fn new(path: &str) -> LJResult<Conf> {
let settings = Config::builder()
.add_source(config::File::with_name(path))
.build()?;
pub fn get_transformers(&self) -> Vec<Box<dyn transformer::Transformers>> {
let mut v = vec![];
for t in &self.transformers {
let t : Box<dyn transformer::Transformers> = match t {
TransformConf::Translate(t) => Box::new(*t),
TransformConf::Replicate(r) => Box::new(*r),
TransformConf::Rotate(r) => Box::new(*r),
TransformConf::FlipH(r) => Box::new(*r),
TransformConf::FlipV(r) => Box::new(*r),
TransformConf::Grid(r) => Box::new(*r),
TransformConf::Homography(r) => Box::new(*r),
};
v.push(t);
let conf: Conf = settings.try_deserialize().map_err(LJError::Config)?;
Ok(conf)
}
v
}
#[allow(dead_code)]
pub fn dump() {
let conf = Conf {
laser_id: 0,
debug: true,
redis_url: "redis://127.0.0.1:6379/".to_string(),
dac: DacFamily::Helios(HeliosConf { id: 0 }),
transformers: vec![
TransformConf::Translate(transformer::Translate { x: 2000.0,
y: 2000.0 } ),
TransformConf::Replicate(transformer::Replicate::Until(48))
]
};
let s = toml::to_string(&conf).unwrap();
println!("{}", s);
}
pub fn get_transformers(&self) -> Vec<Box<dyn transformer::Transformers>> {
let mut v = vec![];
for t in &self.transformers {
let t: Box<dyn transformer::Transformers> = match t {
TransformConf::FlipH(r) => Box::new(*r),
TransformConf::FlipV(r) => Box::new(*r),
TransformConf::Grid(r) => Box::new(*r),
TransformConf::HeliosToEtherdream(r) => Box::new(*r),
TransformConf::Homography(r) => Box::new(*r),
TransformConf::Intensity(r) => Box::new(*r),
TransformConf::Replicate(r) => Box::new(*r),
TransformConf::Rotate(r) => Box::new(*r),
TransformConf::Translate(t) => Box::new(*t),
};
v.push(t);
}
v
}
#[allow(dead_code)]
pub fn dump() {
let conf = Conf {
laser_id: 0,
debug: true,
redis_url: "redis://127.0.0.1:6379/".to_string(),
dac: DacFamily::Helios(HeliosConf { id: 0 }),
transformers: vec![
TransformConf::Translate(transformer::Translate {
x: 2000.0,
y: 2000.0,
}),
TransformConf::Replicate(transformer::Replicate::Until(48)),
],
};
let s = toml::to_string(&conf).unwrap();
println!("{}", s);
}
}

View File

@ -28,8 +28,7 @@ self.point_count
pub enum PlaybackState {
IDLE = 0,
PREPARE = 1,
PLAYING = 2,
UNKNOWN = 99,
PLAYING = 2
}
impl fmt::Display for PlaybackState {
@ -43,7 +42,7 @@ pub struct Status {
pub last_traced_at: String,
pub properties: Vec<String>,
pub playback_state: PlaybackState,
pub capacity: u16,
pub capacity: usize,
pub lack: String,
}

View File

@ -1,57 +1,76 @@
use std::time;
#[warn(unused_imports)]
use log::{ debug, info, warn};
use std::net::SocketAddr;
use ether_dream::dac::stream::connect;
use ether_dream::dac::Stream;
use std::thread::sleep;
use ether_dream::dac::stream::{CommunicationError, connect};
use ether_dream::dac::{Playback, Stream};
use chrono::{DateTime, Utc};
use std::time;
use std::time::{Duration, SystemTime};
use crate::conf::EtherDreamConf;
use crate::device::{Device, Status, PlaybackState};
use crate::errors::{LJError, LJResult};
use crate::point::{Color, Point};
use ether_dream::protocol::{DacBroadcast, DacStatus};
use log::{info, warn};
use ether_dream::protocol::{DacBroadcast, DacResponse};
#[warn(dead_code)]
pub struct EtherdreamDevice {
pub conf: EtherDreamConf,
dac: DacBroadcast,
// source_address: SocketAddr,
stream: Stream,
// sent_points: u16,
lack: String,
last_traced_at: String,
// "a": ACK "F": Full "I": invalid. 64 or 35 for no connection.
// /// The previous command was accepted.
// pub const ACK: u8 = 0x61;
// /// The write command could not be performed because there was not enough buffer space when it
// /// was received.
// pub const NAK_FULL: u8 = 0x46;
// /// The command contained an invalid `command` byte or parameters.
// pub const NAK_INVALID: u8 = 0x49;
// /// An emergency-stop condition still exists.
// pub const NAK_STOP_CONDITION: u8 = 0x21;
// }
dac_response: u8,
}
impl EtherdreamDevice {
pub fn new(conf: &EtherDreamConf) -> LJResult<Self> {
let (dac, _source_address, stream) = EtherdreamDevice::get_dac(conf)?;
// let (dac, source_address) = EtherdreamDevice::get_dac(conf)?;
let (dac, _source_address, stream) = EtherdreamDevice::connect(conf)?;
Ok(Self {
conf: (*conf).clone(),
dac,
// source_address,
stream,
// sent_points: 0,
lack: "".to_string(),
last_traced_at: "1985-04-12T23:20:50.52Z".to_string(),
dac_response: DacResponse::ACK,
})
}
pub fn get_dac(conf: &EtherDreamConf) -> LJResult<(DacBroadcast, SocketAddr, Stream)> {
fn connect(conf: &EtherDreamConf) -> LJResult<(DacBroadcast, SocketAddr, Stream)> {
let ip = &conf.ip;
let dac_broadcast = ether_dream::recv_dac_broadcasts()?;
dac_broadcast.set_timeout(Some(time::Duration::new(10, 0)))?;
info!("Attempting to get DAC broadcast...");
let broadcast = dac_broadcast
.take(3)
.filter_map(|result| {
match result {
Err(err) => {
warn!( "Failed to find a valid DAC via broadcast. Error: {:?}", err);
info!( "Retrying...");
None
},
}
Ok((dac, source_addr)) => {
if source_addr.is_ipv6() { return None; }
if &source_addr.ip().to_string() != ip { return None; }
info!("Valid broadcast");
info!("Valid broadcast, source_addr: {}", source_addr);
if source_addr.is_ipv6() {
warn!("Broadcast ignored: ipv6 address.");
return None;
}
let src_ip = source_addr.ip().to_string();
if &src_ip != ip {
warn!("Broadcast ignored: expected {ip}, got: {src_ip} ");
return None;
}
Some(Ok((dac, source_addr)))
}
}
@ -63,91 +82,227 @@ impl EtherdreamDevice {
Err(Box::new(LJError::EtherdreamConnectError(err)))
}
Ok((dac, source_addr)) => {
info!("Trying to open TCP stream...");
let stream = EtherdreamDevice::get_tcp_stream(&dac, &source_addr)?;
info!("Finished configuring DAC and TCP stream.");
Ok((dac, source_addr, stream))
}
}
}
pub fn get_tcp_stream(dac: &DacBroadcast, source_address: &SocketAddr) -> LJResult<Stream> {
// Establish the TCP connection.
fn get_tcp_stream(dac: &DacBroadcast, source_address: &SocketAddr) -> LJResult<Stream> {
let mut stream = connect(dac, source_address.ip())?;
// Prepare stream
stream
match stream
.queue_commands()
.prepare_stream()
.submit()
.err()
.map(|err| {
eprintln!(
"err occurred when submitting PREPARE_STREAM \
command and listening for response: {}",
err
);
});
.submit() {
Err(err) => warn!("err occurred when submitting PREPARE_STREAM command and listening for response: {}",err),
Ok(_) => info!("Prepared Stream.")
}
// If we want to create an animation (in our case a moving sine wave) we need a frame rate.
let frames_per_second = 60.0;
// Lets use the DAC at an eighth the maximum scan rate.
let points_per_second = stream.dac().max_point_rate / 32;
// Determine the number of points per frame given our target frame and point rates.
let points_per_frame = (points_per_second as f32 / frames_per_second) as u16;
let mut sine_wave = SineWave {
point: 0,
points_per_frame,
frames_per_second,
};
match stream
.queue_commands()
.data(sine_wave.by_ref().take(400))
// .data(begin_list.into_iter().take(400 as usize))
.begin(0, points_per_second)
.submit() {
Err(err) => warn!("err occurred when submitting first data: {}",err),
Ok(_) => info!("Sent first data to Etherdream.")
}
Ok(stream)
}
pub fn check_tcp_stream(&mut self) -> LJResult<()> {
// todo Reinit stream if needed
// self.stream = EtherdreamDevice::get_tcp_stream(&self.dac, &self.source_address)?
Ok(())
fn points_capacity(&self) -> usize {
/***
Determine the number of points needed to fill the DAC.
***/
// Fixme thread 'main' panicked at 'attempt to subtract with overflow', src/device/etherdream.rs:144:24
let n_points = self.dac.buffer_capacity as usize - self.stream.dac().dac.status.buffer_fullness as usize - 1;
n_points
}
// Determine the number of points needed to fill the DAC.
fn points_to_generate(&self) -> usize {
self.dac.buffer_capacity as usize - 1 - self.dac.dac_status.buffer_fullness as usize
fn ping(&mut self) -> LJResult<()> {
Ok(self.stream.queue_commands().ping().submit()?)
}
}
impl Device for EtherdreamDevice {
fn status(&mut self) -> Status {
let _ = self.check_tcp_stream();
// "a": ACK "F": Full "I": invalid. 64 or 35 for no connection.
let playback_state = match self.dac.dac_status.playback_state {
DacStatus::PLAYBACK_IDLE => PlaybackState::IDLE,
DacStatus::PLAYBACK_PREPARED => PlaybackState::PREPARE,
DacStatus::PLAYBACK_PLAYING => PlaybackState::PLAYING,
_ => PlaybackState::UNKNOWN
let playback_state = match self.stream.dac().dac.status.playback {
Playback::Idle => PlaybackState::IDLE,
Playback::Prepared => PlaybackState::PREPARE,
Playback::Playing => PlaybackState::PLAYING,
};
let now = SystemTime::now();
let now: DateTime<Utc> = now.into();
let now = now.to_rfc3339();
Status {
last_traced_at: self.last_traced_at.clone(),
last_traced_at: now,
properties: vec!["foo".to_string()],
playback_state,
capacity: self.dac.dac_status.buffer_fullness,
lack: String::from(&self.lack),
capacity: self.points_capacity(),
lack: self.dac_response.to_string(),
}
// debug!("Dac Status: {:?} ", status );
// debug!("Etherdream Dac {:?} ", self.dac );
// debug!("Stream dac{:?}", self.stream.dac());
// status
}
fn draw(&mut self,
line: Vec<Point>,
_speed: u32,
) -> LJResult<()> {
let n_points = self.points_to_generate();
self.stream
.queue_commands()
.data(line.into_iter().map(|point| point.into()).take(n_points))
.submit()?;
let chunk_size = 64;
let points_iter = line.into_iter();
for chunk in points_iter.as_slice().chunks(chunk_size){
debug!("New chunk length: {:?}", chunk.len());
loop {
let capacity = self.points_capacity();
if chunk.len() > capacity {
debug!("Sleep, capacity : {:?}", capacity);
// Sleep for 1/100th of a sec
sleep(Duration::new( 0, 10000000));
self.ping()?;
} else {
break;
}
}
debug!("drawing");
match self.stream
.queue_commands()
.data(
chunk.iter()
.map(|point| (*point).into())
.take(chunk_size)
)
.submit() {
Err(err) => {
// We should account for
// 'Broken pipe (os error 32)'
// Connection reset by peer (os error 104)
self.dac_response = match err {
CommunicationError::Io(err) => {
warn!("IO ERROR while drawing: '{}'",err);
DacResponse::ACK
}
CommunicationError::Protocol(err) => {
warn!("Protocol ERROR while drawing: '{}'",err);
DacResponse::ACK
}
CommunicationError::Response(err) => {
warn!("Response ERROR while drawing: '{}'",err);
err.response.response
}
};
}
Ok(_) => {
self.dac_response = DacResponse::ACK;
// debug!("Draw is ok");
}
};
}
Ok(())
}
fn stop(&mut self) -> LJResult<()> {
self.stream
info!("Stopping Etherdream device...");
match self.stream
.queue_commands()
.stop()
.submit()
.expect("err occurred when submitting STOP command and listening for response");
Ok(())
{
Err(err) => {
warn!("Failed to stop EtherDream device with error {:?}", err);
Err(Box::new(err))
}
Ok(_) => {
info!("Sucessfully closed EtherDream device.");
Ok(())
}
}
}
fn grid(&mut self) -> Vec<Point> {
vec!(
Point { x: 0.0, y: 0.0, color: Color { r: 255, g: 255, b: 255 } }
)
let dim_mid = 16000.0;
let dim_max = 32000.0;
let col_min = Color { r: 0, g: 0, b: 0 };
let col_max = Color { r: 255, g: 255, b: 255 };
vec![
Point { x: -dim_max, y: dim_max, color: col_min },
Point { x: -dim_max, y: dim_max, color: col_max },
Point { x: dim_max, y: dim_max, color: col_max },
Point { x: dim_max, y: -dim_max, color: col_max },
Point { x: -dim_max, y: -dim_max, color: col_max },
Point { x: -dim_max, y: -dim_mid, color: col_min },
Point { x: -dim_mid, y: dim_mid, color: col_min },
Point { x: -dim_mid, y: dim_mid, color: col_max },
Point { x: dim_mid, y: dim_mid, color: col_max },
Point { x: dim_mid, y: -dim_mid, color: col_max },
Point { x: -dim_mid, y: -dim_mid, color: col_max },
Point { x: -dim_mid, y: -dim_mid, color: col_min },
]
}
}
// An iterator that endlessly generates a sine wave of DAC points.
//
// The sine wave oscillates at a rate of once per second.
struct SineWave {
point: u32,
points_per_frame: u16,
frames_per_second: f32,
}
impl Iterator for SineWave {
type Item = ether_dream::protocol::DacPoint;
fn next(&mut self) -> Option<Self::Item> {
let coloured_points_per_frame = self.points_per_frame - 1;
let i = (self.point % self.points_per_frame as u32) as u16;
let hz = 1.0;
let fract = i as f32 / coloured_points_per_frame as f32;
let phase = (self.point as f32 / coloured_points_per_frame as f32) / self.frames_per_second;
let amp = (hz * (fract + phase) * 2.0 * std::f32::consts::PI).sin();
let (r, g, b) = match i {
i if i == coloured_points_per_frame || i < 13 => (0, 0, 0),
_ => (u16::MAX, u16::MAX, u16::MAX),
};
let x_min = i16::MIN;
let x_max = i16::MAX;
let x = (x_min as f32 + fract * (x_max as f32 - x_min as f32)) as i16;
let y = (amp * x_max as f32) as i16;
let control = 0;
let (u1, u2) = (0, 0);
let p = ether_dream::protocol::DacPoint {
control,
x,
y,
i,
r,
g,
b,
u1,
u2,
};
// debug!("{:?}",p);
self.point += 1;
Some(p)
}
}

View File

@ -1,3 +1,4 @@
use std::time::SystemTime;
///
/// Configure udev:
/// https://github.com/Grix/helios_dac/blob/master/docs/udev_rules_for_linux.md
@ -14,7 +15,7 @@ use crate::conf::HeliosConf;
use crate::device::{Device, Status, PlaybackState};
use crate::errors::{LJError, LJResult};
use crate::point::{Color, Point};
use chrono::Utc;
use chrono::{DateTime, Utc};
pub struct HeliosDevice {
pub conf: HeliosConf,
@ -34,13 +35,17 @@ impl HeliosDevice {
return Err(Box::new(LJError::HeliosDeviceMissing));
};
let dac = device.open()?;
let now = SystemTime::now();
let now: DateTime<Utc> = now.into();
let last_traced_at = now.to_rfc3339();
Ok(Self {
conf: (*conf).clone(),
dac,
sent_points: 0,
state: PlaybackState::PREPARE,
lack: "".to_string(),
last_traced_at: "1985-04-12T23:20:50.52Z".to_string(),
last_traced_at,
})
}
}
@ -52,7 +57,7 @@ impl Device for HeliosDevice {
last_traced_at: self.last_traced_at.clone(),
properties: vec!["foo".to_string()],
playback_state: self.state,
capacity: self.sent_points,
capacity: self.sent_points as usize,
lack,
}
}
@ -80,8 +85,8 @@ impl Device for HeliosDevice {
fn grid(&mut self) -> Vec<Point> {
let dim_min = 0 as f32;
let dim_mid = 2047 as f32;
let dim_max = 4095 as f32;
let dim_mid = 2047.0;
let dim_max = 4095.0;
let col_min = Color { r: 0, g: 0, b: 0 };
let col_max = Color { r: 255, g: 255, b: 255 };

39
src/framerate.rs Normal file
View File

@ -0,0 +1,39 @@
use log::{debug, warn};
use std::time::{Duration, Instant};
use crate::errors::LJResult;
use std::{thread};
/// Converts helios Geometry to Helios
#[derive(Debug, Clone, Copy)]
pub struct Framerate {
prev_trace_time: Instant,
fps: u8,
}
impl Framerate {
pub fn new() -> LJResult<Self> {
Ok(Framerate {
prev_trace_time: Instant::now(),
fps: 20,
})
}
pub fn handle_time(&mut self) -> LJResult<()> {
let frame_time = 1000000000 / self.fps as u128;
let now = Instant::now();
// How long since last loop ?
let nanotime_spent = self.prev_trace_time.elapsed().as_nanos();
// Diw it go too fast? If so : sleep a bit
if frame_time > nanotime_spent {
let nanotime_towait = frame_time - nanotime_spent;
let dur = Duration::new(0, (nanotime_towait as f32 * 0.9) as u32);
// debug!("{:?} - {:?} : {:?}", nanotime_towait, self.prev_trace_time, now );
thread::sleep(dur);
debug!("Framerate OK");
} else {
warn!("Frame longer than expected {:?} > {:?}", nanotime_spent, frame_time, );
}
self.prev_trace_time = now;
Ok(())
}
}

View File

@ -5,3 +5,4 @@ pub mod device;
pub mod point;
pub mod transformer;
pub mod worldstate;
pub mod framerate;

View File

@ -9,6 +9,7 @@ mod point;
mod transformer;
mod device;
mod worldstate;
mod framerate;
use device::device_factory;
use std::sync::atomic::{AtomicBool, Ordering};
@ -21,6 +22,7 @@ use transformer::Transformers;
use log::{LevelFilter, info, /* warn, */ error};
use env_logger::Builder;
use worldstate::WorldState;
use framerate::Framerate;
const DEFAULT_CONF_FILE: &str = "settings.toml";
@ -35,6 +37,13 @@ pub fn main() {
fn run_all() -> LJResult<()> {
// Setup handler for interrupt Signals
let running = Arc::new(AtomicBool::new(true));
let r = running.clone();
ctrlc::set_handler(move || {
r.store(false, Ordering::SeqCst);
})?;
// Setup configuration file and set up logs
let filename = std::env::args().nth(1).unwrap_or_else(|| {
DEFAULT_CONF_FILE.to_string()
@ -53,30 +62,22 @@ fn run_all() -> LJResult<()> {
let mut world_state = rs.init_world_state().unwrap();
info!("WorldState: {:?}", world_state);
// Setup handler for interrupt Signals
let running = Arc::new(AtomicBool::new(true));
let r = running.clone();
ctrlc::set_handler(move || {
r.store(false, Ordering::SeqCst);
})?;
// Setup Laser Device based on conf
let mut tracer = device_factory(&config)?;
world_state.grid = tracer.grid();
// can't work, but we can add + Debug to Device to make it work...
//dbg!(tracer);
// Setup geometry transformers on points lists
let transformers = config.get_transformers();
// Setup framerate limiter
let mut framerate_handler = Framerate::new()?;
// Dispatch based on redis requests
while running.load(Ordering::SeqCst) {
rs.set_status(tracer.status())?;
framerate_handler.handle_time()?;
let order = rs.get_order(config.laser_id)?;
match order {
Order::Draw | Order::Black | Order::Grid => {
// 0 : Draw Normal point list
@ -108,12 +109,15 @@ fn run_all() -> LJResult<()> {
}
Order::ClientKey => {
world_state.client_key = rs.get_client_key()?;
},
// Order::ColorBalance => {},
}
Order::ColorBalance => {
let (r, g, b) = rs.get_color_balance()?;
world_state.color_balance = Color { r, g, b };
}
Order::Resampler => {
world_state.resampler = rs.get_resampler()?;
}
_ => {
// 4 : Resampler Change (longs and shorts lsteps)
// 5 : Client Key Change = reread redis key /clientkey
// 8 : color balance change = reread redis keys /red /green /blue
// 9 : poweroff LJ
info!("Order: {:?}", order);
}
@ -127,14 +131,17 @@ fn run_all() -> LJResult<()> {
fn init_logging(config: &LJResult<Conf>) {
if let Ok(ref config) = config {
if config.debug {
let mut builder = Builder::from_default_env();
builder
.filter(None, LevelFilter::Info)
.init();
info!("Debug mode enabled from configuration file");
return;
}
let level = if config.debug {
LevelFilter::Debug
} else {
LevelFilter::Info
};
let mut builder = Builder::from_default_env();
builder
.filter(None, level)
.init();
info!("Debug mode enabled from configuration file");
return;
}
info!("Logging level inherited from env");
env_logger::init();
@ -165,8 +172,8 @@ fn get_next_frame(
line = transformer.apply(&line, world_state);
}
info!("Draw Black -> {}", world_state.draw_black);
info!("Draw Grid -> {}", world_state.draw_grid);
// info!("Draw Black -> {}", world_state.draw_black);
// info!("Draw Grid -> {}", world_state.draw_grid);
// LIMITER and BLACK
line = line.into_iter()

View File

@ -1,4 +1,6 @@
use ether_dream::protocol::DacPoint;
use std::ops::Mul;
#[derive(Debug, Clone, Copy, Default, PartialEq)]
pub struct Point {
@ -13,6 +15,17 @@ pub struct Color {
pub g: u8,
pub b: u8,
}
impl Mul<u8> for Color {
type Output = Self;
fn mul(self, rhs: u8) -> Self {
Self{
r: (255 * self.r as u16 / rhs as u16) as u8,
g: (255 * self.g as u16 / rhs as u16) as u8,
b: (255 * self.b as u16 / rhs as u16) as u8,
}
}
}
impl From<Color> for u32 {
fn from(value: Color) -> Self {
@ -48,17 +61,21 @@ impl From<Point> for DacPoint {
fn from(pt: Point) -> DacPoint {
let control = 0;
let (u1, u2) = (0, 0);
let i = 255;
DacPoint {
let i = 0;
let x = pt.x.clamp(-32000.0, 32000.0);
let y = pt.y.clamp(-32000.0, 32000.0);
let pt = DacPoint {
control,
x: pt.x as i16,
y: pt.y as i16,
x: x as i16,
y: y as i16,
i,
r: pt.color.r.into(),
g: pt.color.g.into(),
b: pt.color.b.into(),
r: (pt.color.r as u16) * 255,
g: (pt.color.g as u16) * 255,
b: (pt.color.b as u16) * 255,
u1,
u2,
}
};
// debug!("point {:?}", pt);
pt
}
}

View File

@ -2,7 +2,7 @@ use redis::{Client, Commands, Connection};
use ron::de::from_str;
use crate::device::Status;
use crate::errors::{LJError, LJResult};
use crate::worldstate::{WorldState,EDH};
use crate::worldstate::{WorldState, EDH};
// use log::info;
#[repr(u8)]
@ -10,7 +10,6 @@ use crate::worldstate::{WorldState,EDH};
pub enum Order {
Draw = 0,
Edh,
//homography
Black,
Grid,
Resampler,
@ -18,6 +17,7 @@ pub enum Order {
Intensity,
Kpps,
ColorBalance,
PowerOff
}
impl TryFrom<u8> for Order {
@ -40,12 +40,14 @@ impl TryFrom<u8> for Order {
6 => Intensity,
7 => Kpps,
8 => ColorBalance,
9 => PowerOff,
_ => unreachable!()
})
}
}
pub type Line = Vec<(f32, f32, u32)>;
pub type Resampler = Vec<Vec<(f32,f32)>>;
pub struct RedisCtrl {
pub client: Client,
@ -84,11 +86,6 @@ impl RedisCtrl {
Ok(val.try_into()?)
}
/**
/lstt/lasernumber etherdream last_status.playback_state (0: idle 1: prepare 2: playing)
/cap/lasernumber number of empty points sent to fill etherdream buffer (up to 1799)
/lack/lasernumber "a": ACK "F": Full "I": invalid. 64 or 35 for no connection.
**/
pub fn set_status(&mut self, status: Status) -> LJResult<()> {
let lstt_key = format!("/lstt/{}", self.laser_id);
let cap_key = format!("/cap/{}", self.laser_id);
@ -99,34 +96,48 @@ impl RedisCtrl {
Ok(())
}
pub fn init_world_state( &mut self) -> LJResult<WorldState>{
Ok(WorldState {
client_key: self.get_client_key().unwrap(),
edh: self.get_edh().unwrap(),
kpps: self.get_int("kpps").unwrap().try_into().unwrap(),
intensity: self.get_int("intensity").unwrap().try_into().unwrap(),
..WorldState::default()
})
pub fn init_world_state(&mut self) -> LJResult<WorldState> {
Ok(WorldState {
client_key: self.get_client_key()?,
edh: self.get_edh()?,
kpps: self.get_int("kpps")?.try_into()?,
intensity: self.get_int("intensity")?.try_into()?,
..WorldState::default()
})
}
pub fn get_edh( &mut self ) -> LJResult<EDH> {
// Get new EDH
let edh_key = format!("/EDH/{}", self.laser_id);
let edh : String = self.connection.get(edh_key)?;
let edh : Vec<Vec<f32>> = from_str(&edh)?;
let edh = EDH::new(edh)?;
Ok(edh)
pub fn get_edh(&mut self) -> LJResult<EDH> {
// Get new EDH
let edh_key = format!("/EDH/{}", self.laser_id);
let edh: String = self.connection.get(edh_key)?;
let edh: Vec<Vec<f32>> = from_str(&edh)?;
let edh = EDH::new(edh)?;
Ok(edh)
}
pub fn get_client_key( &mut self ) -> LJResult<String> {
let key : String = self.connection.get("/clientkey")?;
Ok(key)
pub fn get_client_key(&mut self) -> LJResult<String> {
let key: String = self.connection.get("/clientkey")?;
Ok(key)
}
pub fn get_int(&mut self, key: &str ) -> LJResult<u32> {
// Get new Int
let fmt = format!("/{key}/{}", self.laser_id);
let val : u32 = self.connection.get(fmt)?;
Ok(val)
pub fn get_color_balance(&mut self) -> LJResult<(u8, u8, u8)> {
Ok((
self.connection.get("/red")?,
self.connection.get("/green")?,
self.connection.get("/blue")?,
))
}
pub fn get_resampler(&mut self ) -> LJResult<Resampler> {
let val: String = self.connection.get(format!("/resampler/{}", self.laser_id))?;
let resampler : Resampler = from_str(&val)?;
Ok(resampler)
}
pub fn get_int(&mut self, key: &str) -> LJResult<u32> {
// Get new Int
let fmt = format!("/{key}/{}", self.laser_id);
let val: u32 = self.connection.get(fmt)?;
Ok(val)
}
}

View File

@ -1,11 +1,12 @@
//pub mod common;
mod translate;
mod replicate;
mod rotate;
mod flip_horizontal;
mod flip_vertical;
mod grid;
mod helios_to_etherdream;
mod homography;
mod intensity;
mod replicate;
mod rotate;
mod translate;
use crate::point::Point;
use crate::worldstate::WorldState;
@ -18,6 +19,8 @@ pub use flip_horizontal::FlipHorizontal;
pub use flip_vertical::FlipVertical;
pub use grid::Grid;
pub use self::homography::Homography;
pub use helios_to_etherdream::HeliosToEtherdream;
pub use intensity::Intensity;
pub trait Transformers {
fn apply(

View File

@ -0,0 +1,27 @@
use crate::transformer::Transformers;
use crate::point::Point;
use crate::worldstate::WorldState;
use serde::{Serialize, Deserialize};
/// Converts helios Geometry to Helios
#[allow(dead_code)]
#[derive(Serialize, Deserialize, Debug, Clone, Copy)]
pub struct HeliosToEtherdream {
}
impl Transformers for HeliosToEtherdream {
fn apply(&self, point_list: &[Point], _ws: &WorldState) -> Vec<Point> {
// debug!("list helios {:?}", point_list);
let out = point_list.iter().map(|pt| {
Point {
x: 8.0 * (pt.x - 2047.0),
y: 8.0 * (pt.y - 2047.0),
..*pt
}
}).collect();
// debug!("list etherdream {:?}", out);
out
}
}

View File

@ -0,0 +1,28 @@
use log::debug;
use crate::transformer::Transformers;
use crate::point::Point;
use crate::worldstate::WorldState;
use serde::{Serialize, Deserialize};
/// Converts helios Geometry to Helios
#[allow(dead_code)]
#[derive(Serialize, Deserialize, Debug, Clone, Copy)]
pub struct Intensity {
}
impl Transformers for Intensity {
fn apply(&self, point_list: &[Point], ws: &WorldState) -> Vec<Point> {
// debug!("list helios {:?}", point_list);
let out = point_list.iter().map(|pt| {
Point {
x: pt.x,
y: pt.y,
color: pt.color * ws.intensity
}
}).collect();
debug!("list intensity {:?}", out);
out
}
}

View File

@ -2,6 +2,7 @@ use crate::point::{Point, Color};
use nalgebra::base::{Matrix3, Matrix1x3};
use crate::errors::{LJError, LJResult};
use log::debug;
use crate::redis_ctrl::Resampler;
#[derive(Debug, Default)]
pub struct EDH {
@ -39,7 +40,7 @@ impl EDH {
#[derive(Debug, Default)]
pub struct WorldState {
pub edh: EDH,
pub resampler: Vec<f32>,
pub resampler: Resampler,
pub client_key: String,
pub intensity: u8,
pub kpps: u32,
@ -47,6 +48,7 @@ pub struct WorldState {
pub draw_black: bool,
pub draw_grid: bool,
pub grid: Vec<Point>,
pub color_balance: Color,
}
impl WorldState {}