This commit is contained in:
alban 2020-11-11 17:31:08 +01:00
commit 6d70ca0c32
39 changed files with 13735 additions and 0 deletions

3
.gitignore vendored Normal file
View File

@ -0,0 +1,3 @@
.DS_Store
.*swp*
*__pycache__

70
README.md Normal file
View File

@ -0,0 +1,70 @@
# Chaining Lasers In Submission Tools for LJ
Alright everybody, ready for some fun? Here comes The Piping And Plumbing Your Way To The Top Show!
You're going to push so many points to this laser it will hog and cry...
BOOM | WIIIIIZ :: PHHHHHRACKRACKRACK ~~ WOOP ~~###~~ WIIT
## The basic loop
```
python3 generators/dummy.py -f 2 | python3 filters/kaleidoscope.py | python3 exports/toRedis.py -v
------------------------------ --------------------- -------------------
\/ \/ \/
Generator Filter Export
```
### 1. The Generator
Use it to produce some points in any manner, orderly or total chaos.
Don't be that boring Sinusoids bugger! Flash Maps of Dooms, Disbitnic sprites, Dismorphic HexaFonts all over the walls!
### 2. The Filter(s)
These babies will modify data on the wire by passing around the points and modifying them in sequence.
Want your Double Heavy Laser Cannons to Bounce Together Like They Been Drinking Jagerbombs For Two Hours? That's the place.
### 3. The Exporter
Now, this IS the most boring part. Send your points to whatever output system. Yawn. Are we there yet?
## Hacking around
Say what!? Why, this is exactly the place for that!
Take a seat and copy paste the "dummy.py" files, they present the basic structure you need to play around.
Just be cautious to use the `debug` method if you're the kind of miss that debugs by outputing data structures (who does not, yah know, sometimes?). Or you'll break the chain.
### Generators
They must send list of points to standard out. Don't forget the "flush" argument, or the piping will be breaking, ain't no Mario lazering.
* dummy.py : sends always the same list of points. The Monomaniac.
* @todo : read texts from redis and others
### Filters
These do listen and read on STDIN and do the same print'n'flush on STDOUT.
* kaleidoscope.py : mirrors the points based on a pivot
* @todo : fourier analysis and other realtime reaction
### Export
Read from STDIN and send to redis mostly
* toRedis.py : provide a key, server IP, etc.
### Common parameters
Every command can be called with a `-h/--help` flag to get some help
Every command has a `-v/--verbose` flag to send debug info to STDERR.
Generators have a `-f/--fps` param for FPS, to be fast but not so furious on your machine
Filters and Exports are their own beasts

11
_run.sh Executable file
View File

@ -0,0 +1,11 @@
#!/bin/bash
killexit(){
pkill -9 -s $$
}
trap killexit SIGTERM SIGINT SIGKILL SIGSTOP
bash -c "$@"
killbill(){ pkill -9 -s $(awk '{print $6}' /proc/$1/stat) }

46
exports/toNull.py Executable file
View File

@ -0,0 +1,46 @@
#!/usr/bin/python3
# -*- coding: utf-8 -*-
# -*- mode: Python -*-
'''
The exporter that drops all traffic !
v0.1.0
A basic exporter
LICENCE : CC
by cocoa
'''
from __future__ import print_function
import sys
import os
import argparse
import redis
import time
argsparser = argparse.ArgumentParser(description="Null exporter LJ")
argsparser.add_argument("-v","--verbose",action="store_true",help="Verbose")
args = argsparser.parse_args()
verbose=args.verbose
name = "exports::toNull"
def debug(*args, **kwargs):
if( verbose == False ):
return
print(*args, file=sys.stderr, **kwargs)
try:
while True:
line = sys.stdin.readline()
if line == "":
time.sleep(0.01)
debug(name,"dumping: "+line)
except EOFError:
debug("break")# no more information

63
exports/toRedis.py Normal file
View File

@ -0,0 +1,63 @@
#!/usr/bin/python3
# -*- coding: utf-8 -*-
# -*- mode: Python -*-
'''
redis exporter
v0.1.0
A basic exporter
LICENCE : CC
by cocoa
'''
from __future__ import print_function
import sys
import os
import argparse
import redis
import time
argsparser = argparse.ArgumentParser(description="Redis exporter LJ")
argsparser.add_argument("-i","--ip",help="IP address of the Redis server ",default="127.0.0.1",type=str)
argsparser.add_argument("-p","--port",help="Port of the Redis server ",default="6379",type=str)
argsparser.add_argument("-k","--key",help="Redis key to update",default="0",type=str)
argsparser.add_argument("-v","--verbose",action="store_true",help="Verbose")
args = argsparser.parse_args()
ip = args.ip
port = args.port
key = args.key
verbose=args.verbose
def debug(*args, **kwargs):
if( verbose == False ):
return
print(*args, file=sys.stderr, **kwargs)
r=redis.StrictRedis(host=ip, port=port, db=0)
try:
while True:
line = sys.stdin.readline()
if line == "":
time.sleep(0.01)
continue
line = line.rstrip('\n')
line=line[1:-1]
line = line.replace("[",'(')
line = line.replace("]",')')
line = "[{}]".format(line)
if line == "[]":
line="[(400.0,400.0,0),(400.0,400.0,0),(400.0,400.0,0),(400.0,400.0,0)]"
continue
if r.set(key,line)==True:
debug("exports::redis set("+str(key)+") to "+line)
except EOFError:
debug("break")# no more information

84
exports/toUDP.py Normal file
View File

@ -0,0 +1,84 @@
#!/usr/bin/python3
# -*- coding: utf-8 -*-
# -*- mode: Python -*-
'''
toUDP
v0.1.0
A basic exporter
LICENCE : CC
by cocoa
'''
from __future__ import print_function
import sys
import os
import argparse
import time
import socket
import ast
argsparser = argparse.ArgumentParser(description="toUDP v0.1b help mode")
argsparser.add_argument("-v","--verbose",action="store_true",help="Verbose output")
argsparser.add_argument("-i","--ip",help="IP to bind to (0.0.0.0 by default)",default="0.0.0.0",type=str)
argsparser.add_argument("-p","--port",help="UDP port to bind to (9000 by default)",default="9003",type=str)
args = argsparser.parse_args()
verbose = args.verbose
ip = args.ip
port = int(args.port)
verbose = args.verbose
name = "exports::toUDP"
def debug(*args, **kwargs):
if( verbose == False ):
return
print(*args, file=sys.stderr, **kwargs)
def ClientStart(ip, port):
global sockclient
sockclient = socket.socket(family=socket.AF_INET, type=socket.SOCK_DGRAM)
def ClientSend(msgFromClient):
bytesToSend = str.encode(str(msgFromClient))
serverAddressPort = (ip, port)
bufferSize = 1024
# Send to server using created UDP socket
sockclient.sendto(bytesToSend, serverAddressPort)
'''
# If reply :
msgFromServer = sockclient.recvfrom(bufferSize)
msg = "Message from Server {}".format(msgFromServer[0])
print(msg)
'''
try:
ClientStart(ip, port)
while True:
line = sys.stdin.readline()
if line == "":
time.sleep(0.01)
line = line.rstrip('\n')
#pointsList = ast.literal_eval(line)
debug(name,": "+line)
ClientSend(line)
except EOFError:
debug("break")# no more information

115
exports/toWS.py Normal file
View File

@ -0,0 +1,115 @@
#!/usr/bin/python3
# -*- coding: utf-8 -*-
# -*- mode: Python -*-
'''
toWS
exporter to LJ via WebSocket
v0.1b
'''
from __future__ import print_function
import websocket
import time
import argparse
import traceback
import sys
try:
import thread
except ImportError:
import _thread as thread
print("")
print("toWS v0.1b")
print ("Arguments parsing if needed...")
argsparser = argparse.ArgumentParser(description="toWS v0.1b help mode")
argsparser.add_argument("-v","--verbose",action="store_true",help="Verbose output")
argsparser.add_argument("-s","--server",help="WS server IP (127.0.0.1 by default)", type=str)
argsparser.add_argument("-p","--port",help="WS port to bind to (9001 by default)", type=str)
argsparser.add_argument("-k","--key",help="Redis key to update",default="0",type=str)
args = argsparser.parse_args()
key = args.key
verbose=args.verbose
name = "exports::toWS"
# Server name
if args.server:
serverIP = args.server
else:
serverIP = "127.0.0.1"
# ORCA destination device
if args.port:
wsPORT = args.port
else:
wsPORT = 9001
def debug(*args, **kwargs):
if( verbose == False ):
return
print(*args, file=sys.stderr, **kwargs)
def GetTime():
return time.strftime("%a, %d %b %Y %H:%M:%S", time.localtime())
def on_message(ws, message):
debug(message)
def on_error(ws, error):
debug(error)
def on_close(ws):
debug("### closed ###")
def on_open(ws):
def run(*args):
try:
while True:
line = sys.stdin.readline()
if line == "":
time.sleep(0.01)
line = line.rstrip('\n')
line=line[1:-1]
line = line.replace("[",'(')
line = line.replace("]",')')
#debug(line)
line = "[{}]".format(line)
ws.send(str(key)+' "'+line+'"')
debug("exports::ws "+str(key)+" "+line)
except EOFError:
debug("break")# no more information
finally:
ws.close()
print("sendWS terminating...")
thread.start_new_thread(run, ())
if __name__ == "__main__":
websocket.enableTrace(True)
ws = websocket.WebSocketApp("ws://"+str(serverIP)+":"+str(wsPORT),
on_message = on_message,
on_error = on_error,
on_close = on_close)
ws.on_open = on_open
ws.run_forever()

158
exports/tonano.py Normal file
View File

@ -0,0 +1,158 @@
#!/usr/bin/python3
# -*- coding: utf-8 -*-
# -*- mode: Python -*-
'''
tonano
exporter to LJ nano
v0.1b
'''
from __future__ import print_function
import websocket
import time
import argparse
import traceback
import sys
import random
from websocket_server import WebsocketServer
from socket import *
try:
import thread
except ImportError:
import _thread as thread
name = "exports::tonano"
def debug(*args, **kwargs):
if( verbose == False ):
return
print(*args, file=sys.stderr, **kwargs)
argsparser = argparse.ArgumentParser(description="tonano v0.1b help mode")
argsparser.add_argument("-v","--verbose",action="store_true",help="Verbose output")
argsparser.add_argument("-s","--server",help="WS server IP (127.0.0.1 by default)", type=str)
argsparser.add_argument("-p","--port",help="WS port to bind to (9001 by default)", type=str)
argsparser.add_argument("-k","--key",help="Redis key to update",default="0",type=str)
args = argsparser.parse_args()
key = args.key
if args.verbose:
verbose = True
else:
verbose = False
if args.server:
serverIP = args.server
else:
serverIP = "127.0.0.1"
if args.port:
wsPORT = args.port
else:
wsPORT = 9001
debug("")
debug("tonano v0.1b")
points0 = "[(150.0, 230.0, 65280), (170.0, 170.0, 65280), (230.0, 170.0, 65280), (210.0, 230.0, 65280), (150.0, 230.0, 65280)]"
points1 = "[(180.0, 230.0, 65280), (200.0, 170.0, 65280), (180.0, 230.0, 65280)]"
points2 = "[(170.0, 190.0, 65280), (200.0, 170.0, 65280), (230.0, 190.0, 65280), (230.0, 200.0, 65280), (170.0, 230.0, 65280), (230.0, 230.0, 65280)]"
points3 = "[(170.0, 170.0, 65280), (200.0, 170.0, 65280), (230.0, 190.0, 65280), (200.0, 200.0, 65280), (230.0, 210.0, 65280), (200.0, 230.0, 65280), (170.0, 230.0, 65280)]"
points = [points0, points1, points2, points3]
LaserNumber = 1
SceneNumber = 0
Laser = 0
def sendbroadcast():
debug("Sending broadcast")
cs = socket(AF_INET, SOCK_DGRAM)
cs.setsockopt(SOL_SOCKET, SO_REUSEADDR, 1)
cs.setsockopt(SOL_SOCKET, SO_BROADCAST, 1)
cs.sendto("LJ tonano 0.1".encode(), ("255.255.255.255", 54545))
#
# CLI websocket client -> WS server (nanoLJ) -> webpage
#
def on_message(ws, message):
if random.randint(0,100)>95:
sendbroadcast()
#debug("CLI WS client received and dropped "+message)
def on_error(ws, error):
debug("CLI WS client got error :"+str(error))
def on_close(ws):
debug("### CLI WS client WS closed ###")
def on_open(ws):
def run(*args):
try:
while True:
line = sys.stdin.readline()
if line == "":
time.sleep(0.005)
#debug("CLI string", line)
line = line.rstrip('\n')
line=line[1:-1]
line = line.replace("[",'(')
line = line.replace("]",')')
#debug(line)
line = "[{}]".format(line)
debug("CLI proccess sending : /simul" +" "+ line)
#sendWSall("/simul" +" "+ str(points[laserid].decode('ascii')))
ws.send("/simul "+line)
#debug("exports::tosimuCLIent "+str(key)+" "+line)
except EOFError:
debug("tonano break")# no more information
finally:
ws.close()
debug("tonano WS terminating...")
thread.start_new_thread(run, ())
def handle_timeout(self):
self.timed_out = True
#
# Launch WS CLI client
#
if __name__ == "__main__":
try:
# CLI Websocket client
debug("Launching tosimu CLI websocket client...")
#websocket.enableTrace(True)
websocket.enableTrace(False)
print("ws://"+str(serverIP)+":"+str(wsPORT))
ws = websocket.WebSocketApp("ws://"+str(serverIP)+":"+str(wsPORT),
on_message = on_message,
on_error = on_error,
on_close = on_close)
ws.on_open = on_open
ws.run_forever()
except Exception:
debug("tonano Exception")
traceback.print_exc()

388
exports/websocket_server.py Normal file
View File

@ -0,0 +1,388 @@
# Author: Johan Hanssen Seferidis
# License: MIT
'''
Custom version
with clients_list()
For 2 clients :
[{'id': 1, 'handler': <websocket_server.WebSocketHandler object at 0x114d35880>, 'address': ('127.0.0.1', 62718)}, {'id': 2, 'handler': <websocket_server.WebSocketHandler object at 0x114d35d60>, 'address': ('127.0.0.1', 62720)}]
def client_list():
clients = wserver.clients()
for client in clients:
print(client['id'])
'''
import sys
import struct
from base64 import b64encode
from hashlib import sha1
import logging
from socket import error as SocketError
import errno
if sys.version_info[0] < 3:
from SocketServer import ThreadingMixIn, TCPServer, StreamRequestHandler
else:
from socketserver import ThreadingMixIn, TCPServer, StreamRequestHandler
logger = logging.getLogger(__name__)
logging.basicConfig()
'''
+-+-+-+-+-------+-+-------------+-------------------------------+
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-------+-+-------------+-------------------------------+
|F|R|R|R| opcode|M| Payload len | Extended payload length |
|I|S|S|S| (4) |A| (7) | (16/64) |
|N|V|V|V| |S| | (if payload len==126/127) |
| |1|2|3| |K| | |
+-+-+-+-+-------+-+-------------+ - - - - - - - - - - - - - - - +
| Extended payload length continued, if payload len == 127 |
+ - - - - - - - - - - - - - - - +-------------------------------+
| Payload Data continued ... |
+---------------------------------------------------------------+
'''
FIN = 0x80
OPCODE = 0x0f
MASKED = 0x80
PAYLOAD_LEN = 0x7f
PAYLOAD_LEN_EXT16 = 0x7e
PAYLOAD_LEN_EXT64 = 0x7f
OPCODE_CONTINUATION = 0x0
OPCODE_TEXT = 0x1
OPCODE_BINARY = 0x2
OPCODE_CLOSE_CONN = 0x8
OPCODE_PING = 0x9
OPCODE_PONG = 0xA
# -------------------------------- API ---------------------------------
class API():
def run_forever(self):
try:
logger.info("Listening on port %d for clients.." % self.port)
self.serve_forever()
except KeyboardInterrupt:
self.server_close()
logger.info("Server terminated.")
except Exception as e:
logger.error(str(e), exc_info=True)
exit(1)
def new_client(self, client, server):
pass
def client_left(self, client, server):
pass
def message_received(self, client, server, message):
pass
def set_fn_new_client(self, fn):
self.new_client = fn
def set_fn_client_left(self, fn):
self.client_left = fn
def set_fn_message_received(self, fn):
self.message_received = fn
def send_message(self, client, msg):
self._unicast_(client, msg)
def send_message_to_all(self, msg):
self._multicast_(msg)
def clients_list(self):
return self.clients
# ------------------------- Implementation -----------------------------
class WebsocketServer(ThreadingMixIn, TCPServer, API):
"""
A websocket server waiting for clients to connect.
Args:
port(int): Port to bind to
host(str): Hostname or IP to listen for connections. By default 127.0.0.1
is being used. To accept connections from any client, you should use
0.0.0.0.
loglevel: Logging level from logging module to use for logging. By default
warnings and errors are being logged.
Properties:
clients(list): A list of connected clients. A client is a dictionary
like below.
{
'id' : id,
'handler' : handler,
'address' : (addr, port)
}
"""
allow_reuse_address = True
daemon_threads = True # comment to keep threads alive until finished
clients = []
id_counter = 0
def __init__(self, port, host='127.0.0.1', loglevel=logging.WARNING):
logger.setLevel(loglevel)
TCPServer.__init__(self, (host, port), WebSocketHandler)
self.port = self.socket.getsockname()[1]
def _message_received_(self, handler, msg):
self.message_received(self.handler_to_client(handler), self, msg)
def _ping_received_(self, handler, msg):
handler.send_pong(msg)
def _pong_received_(self, handler, msg):
pass
def _new_client_(self, handler):
self.id_counter += 1
client = {
'id': self.id_counter,
'handler': handler,
'address': handler.client_address
}
self.clients.append(client)
self.new_client(client, self)
def _client_left_(self, handler):
client = self.handler_to_client(handler)
self.client_left(client, self)
if client in self.clients:
self.clients.remove(client)
def _unicast_(self, to_client, msg):
to_client['handler'].send_message(msg)
def _multicast_(self, msg):
for client in self.clients:
self._unicast_(client, msg)
def handler_to_client(self, handler):
for client in self.clients:
if client['handler'] == handler:
return client
class WebSocketHandler(StreamRequestHandler):
def __init__(self, socket, addr, server):
self.server = server
StreamRequestHandler.__init__(self, socket, addr, server)
def setup(self):
StreamRequestHandler.setup(self)
self.keep_alive = True
self.handshake_done = False
self.valid_client = False
def handle(self):
while self.keep_alive:
if not self.handshake_done:
self.handshake()
elif self.valid_client:
self.read_next_message()
def read_bytes(self, num):
# python3 gives ordinal of byte directly
bytes = self.rfile.read(num)
if sys.version_info[0] < 3:
return map(ord, bytes)
else:
return bytes
def read_next_message(self):
try:
b1, b2 = self.read_bytes(2)
except SocketError as e: # to be replaced with ConnectionResetError for py3
if e.errno == errno.ECONNRESET:
logger.info("Client closed connection.")
print("Error: {}".format(e))
self.keep_alive = 0
return
b1, b2 = 0, 0
except ValueError as e:
b1, b2 = 0, 0
fin = b1 & FIN
opcode = b1 & OPCODE
masked = b2 & MASKED
payload_length = b2 & PAYLOAD_LEN
if opcode == OPCODE_CLOSE_CONN:
logger.info("Client asked to close connection.")
self.keep_alive = 0
return
if not masked:
logger.warn("Client must always be masked.")
self.keep_alive = 0
return
if opcode == OPCODE_CONTINUATION:
logger.warn("Continuation frames are not supported.")
return
elif opcode == OPCODE_BINARY:
logger.warn("Binary frames are not supported.")
return
elif opcode == OPCODE_TEXT:
opcode_handler = self.server._message_received_
elif opcode == OPCODE_PING:
opcode_handler = self.server._ping_received_
elif opcode == OPCODE_PONG:
opcode_handler = self.server._pong_received_
else:
logger.warn("Unknown opcode %#x." % opcode)
self.keep_alive = 0
return
if payload_length == 126:
payload_length = struct.unpack(">H", self.rfile.read(2))[0]
elif payload_length == 127:
payload_length = struct.unpack(">Q", self.rfile.read(8))[0]
masks = self.read_bytes(4)
message_bytes = bytearray()
for message_byte in self.read_bytes(payload_length):
message_byte ^= masks[len(message_bytes) % 4]
message_bytes.append(message_byte)
opcode_handler(self, message_bytes.decode('utf8'))
def send_message(self, message):
self.send_text(message)
def send_pong(self, message):
self.send_text(message, OPCODE_PONG)
def send_text(self, message, opcode=OPCODE_TEXT):
"""
Important: Fragmented(=continuation) messages are not supported since
their usage cases are limited - when we don't know the payload length.
"""
# Validate message
if isinstance(message, bytes):
message = try_decode_UTF8(message) # this is slower but ensures we have UTF-8
if not message:
logger.warning("Can\'t send message, message is not valid UTF-8")
return False
elif sys.version_info < (3,0) and (isinstance(message, str) or isinstance(message, unicode)):
pass
elif isinstance(message, str):
pass
else:
logger.warning('Can\'t send message, message has to be a string or bytes. Given type is %s' % type(message))
return False
header = bytearray()
payload = encode_to_UTF8(message)
payload_length = len(payload)
# Normal payload
if payload_length <= 125:
header.append(FIN | opcode)
header.append(payload_length)
# Extended payload
elif payload_length >= 126 and payload_length <= 65535:
header.append(FIN | opcode)
header.append(PAYLOAD_LEN_EXT16)
header.extend(struct.pack(">H", payload_length))
# Huge extended payload
elif payload_length < 18446744073709551616:
header.append(FIN | opcode)
header.append(PAYLOAD_LEN_EXT64)
header.extend(struct.pack(">Q", payload_length))
else:
raise Exception("Message is too big. Consider breaking it into chunks.")
return
self.request.send(header + payload)
def read_http_headers(self):
headers = {}
# first line should be HTTP GET
http_get = self.rfile.readline().decode().strip()
assert http_get.upper().startswith('GET')
# remaining should be headers
while True:
header = self.rfile.readline().decode().strip()
if not header:
break
head, value = header.split(':', 1)
headers[head.lower().strip()] = value.strip()
return headers
def handshake(self):
headers = self.read_http_headers()
try:
assert headers['upgrade'].lower() == 'websocket'
except AssertionError:
self.keep_alive = False
return
try:
key = headers['sec-websocket-key']
except KeyError:
logger.warning("Client tried to connect but was missing a key")
self.keep_alive = False
return
response = self.make_handshake_response(key)
self.handshake_done = self.request.send(response.encode())
self.valid_client = True
self.server._new_client_(self)
@classmethod
def make_handshake_response(cls, key):
return \
'HTTP/1.1 101 Switching Protocols\r\n'\
'Upgrade: websocket\r\n' \
'Connection: Upgrade\r\n' \
'Sec-WebSocket-Accept: %s\r\n' \
'\r\n' % cls.calculate_response_key(key)
@classmethod
def calculate_response_key(cls, key):
GUID = '258EAFA5-E914-47DA-95CA-C5AB0DC85B11'
hash = sha1(key.encode() + GUID.encode())
response_key = b64encode(hash.digest()).strip()
return response_key.decode('ASCII')
def finish(self):
self.server._client_left_(self)
def encode_to_UTF8(data):
try:
return data.encode('UTF-8')
except UnicodeEncodeError as e:
logger.error("Could not encode data to UTF-8 -- %s" % e)
return False
except Exception as e:
raise(e)
return False
def try_decode_UTF8(data):
try:
return data.decode('utf-8')
except UnicodeDecodeError:
return False
except Exception as e:
raise(e)

200
filters/anaglyph.py Executable file
View File

@ -0,0 +1,200 @@
#!/usr/bin/python3
# -*- coding: utf-8 -*-
# -*- mode: Python -*-
'''
anaglyph
v0.1.0
Attempts to create a valid 3D-glasses structure
LICENCE : CC
by cocoa
'''
from __future__ import print_function
import argparse
import ast
import math
import os
import random
import sys
import time
name = "filters::cycle"
maxDist = 300
argsparser = argparse.ArgumentParser(description="Redis exporter LJ")
argsparser.add_argument("-x","--centerX",help="geometrical center X position",default=400,type=int)
argsparser.add_argument("-y","--centerY",help="geometrical center Y position",default=400,type=int)
argsparser.add_argument("-m","--min",help="Minimal displacement (default:2) ",default=1,type=int)
argsparser.add_argument("-M","--max",help="Maximal displacement (default:20) ",default=5,type=int)
argsparser.add_argument("-f","--fps",help="Frame Per Second",default=30,type=int)
argsparser.add_argument("-v","--verbose",action="store_true",help="Verbose")
args = argsparser.parse_args()
fps = args.fps
minVal = args.min
maxVal = args.max
centerX = args.centerX
centerY = args.centerY
verbose = args.verbose
optimal_looptime = 1 / fps
name = "filters::anaglyph"
def debug(*args, **kwargs):
if( verbose == False ):
return
print(*args, file=sys.stderr, **kwargs)
def rgb2int(rgb):
#debug(name,"::rgb2int rbg:{}".format(rgb))
return int('0x%02x%02x%02x' % tuple(rgb),0)
def isValidColor( color, intensityColThreshold ):
if color[0] + color[1] + color[2] > intensityColThreshold:
return True
return False
# These are paper colors
red = (41,24,24)
white = (95,95,95)
blue = (0,41,64)
red = (127,0,0)
blue = (0,128,128)
white = (128,128,128)
def anaglyph( pl ):
debug(name,'--------------- new loop ------------------')
# We will send one list after the other to optimize color change
blueList = list()
redList = list()
whiteList = list()
out = []
out1 = []
out2 = []
out3 = []
# The anaglyphic effect will be optained by :
# * having close objects appear as white
# * having distant objects appear as blue + red
# * having in between objects appear as distanceDecreased(white) + blue + red
for i, point in enumerate(pl):
ref_x = point[0]-centerX
ref_y = point[1]-centerY
ref_color = point[2]
angle = math.atan2( ref_x , ref_y )
dist = ref_y / math.cos(angle)
white_rvb = (0,0,0)
blue_rvb = (0,0,0)
red_rvb = (0,0,0)
# Calculate the point's spread factor (0.0 to 1.0)
# The spread is high if the point is close to center
"""
dist = 0 : spread = 1.0
dist = maxDist spread = 0.0
"""
if dist == 0:
spread = 1.0
else :
spread =( maxDist - dist ) / maxDist
if spread < 0.0:
spread = 0.0
#debug(name,"dist:{} spread:{}".format(dist,spread))
# White color is high if spread is low, i.e. point away from center
"""
spread = 1.0 : white_c = 0.0
spread = 0.0 : whice_c = 1.0
"""
if point[2] == 0:
white_color = 0
else:
white_factor = 1.0 - math.pow(spread,0.5)
white_rvb = tuple(map( lambda a: int(white_factor* a), white))
white_color = rgb2int( white_rvb)
#debug(name,"spread:{}\t white_rvb:{}\t white_color:{}".format(spread, white_rvb, white_color))
# Blue and Red colors are high if spread is high, i.e. close to center
"""
spread = 1.0 : red_c = 1.0
spread = 0.0 : red_c = 0.0
"""
color_factor = math.pow(spread,1)
if point[2] == 0:
blue_color = 0
red_color = 0
else:
blue_rvb = tuple(map( lambda a: int(color_factor * a), blue))
blue_color = rgb2int( blue_rvb)
red_rvb = tuple(map( lambda a: int(color_factor * a), red))
red_color = rgb2int( red_rvb)
#debug(name,"color_factor:{}\t\t blue_color:{}\t\t red_color:{}".format(color_factor,blue_color,red_color))
# Blue-to-Red spatial spread is high when spread is high, i.e. point close to center
"""
spread = 1.0 : spatial_spread = maxVal
spread = 0.0 : spatial_spread = minVal
"""
spatial_spread = minVal + spread * (maxVal - minVal)
#debug(name,"spatial_spread:{}".format(spatial_spread))
red_x = int(point[0] + spatial_spread)
blue_x = int(point[0] - spatial_spread )
red_y = int(point[1] )
blue_y = int(point[1])
white_point = [point[0], point[1], white_color]
blue_point = [blue_x,blue_y,blue_color]
red_point = [red_x,red_y,red_color]
#debug(name,"white[x,y,c]:{}".format(white_point))
#debug(name,"blue[x,y,c]:{}".format(blue_point))
#debug(name,"red[x,y,c]:{}".format(red_point))
# Do not append "black lines" i.e. a color where each composent is below X
# if isValidColor(white_rvb, 150):
# out1.append(white_point)
# if isValidColor(blue_rvb, 50):
# out2.append(blue_point)
# if isValidColor(red_rvb, 30):
# out3.append(red_point)
out1.append(white_point)
out2.append(blue_point)
out3.append(red_point)
#debug(name,"source pl:{}".format(pl))
debug(name,"whiteList:{}".format(out1))
debug(name,"blueList:{}".format(out2))
debug(name,"redList:{}".format(out3))
return out1 + out3 + out2
#return out1 + out2 + out3
try:
while True:
start = time.time()
line = sys.stdin.readline()
if line == "":
time.sleep(0.01)
line = line.rstrip('\n')
pointsList = ast.literal_eval(line)
# Do the filter
result = anaglyph( pointsList )
print( result, flush=True )
looptime = time.time() - start
# debug(name+" looptime:"+str(looptime))
if( looptime < optimal_looptime ):
time.sleep( optimal_looptime - looptime)
# debug(name+" micro sleep:"+str( optimal_looptime - looptime))
except EOFError:
debug(name+" break")# no more information

108
filters/colorcycle.py Executable file
View File

@ -0,0 +1,108 @@
#!/usr/bin/python3
# -*- coding: utf-8 -*-
# -*- mode: Python -*-
'''
colorcycle
v0.1.0
A simple effect : cycle colors
LICENCE : CC
by cocoa
'''
from __future__ import print_function
import sys
import ast
import os
import argparse
import random
import time
name = "filters::cycle"
argsparser = argparse.ArgumentParser(description="Redis exporter LJ")
argsparser.add_argument("-x","--centerX",help="geometrical center X position",default=300,type=int)
argsparser.add_argument("-y","--centerY",help="geometrical center Y position",default=300,type=int)
argsparser.add_argument("-m","--min",help="Lowest value in the range 0-255",default=10,type=int)
argsparser.add_argument("-M","--max",help="Highest value in the range 0-255",default=255,type=int)
argsparser.add_argument("-f","--fps",help="Frame Per Second",default=30,type=int)
argsparser.add_argument("-v","--verbose",action="store_true",help="Verbose")
args = argsparser.parse_args()
fps = args.fps
minVal = args.min
maxVal = args.max
centerX = args.centerX
centerY = args.centerY
verbose = args.verbose
optimal_looptime = 1 / fps
UP = 5
DOWN = -5
currentColor = [0,0,0]
composant = 0
currentDirection = UP
def debug(*args, **kwargs):
if( verbose == False ):
return
print(*args, file=sys.stderr, **kwargs)
def rgb2int(rgb):
return int('0x%02x%02x%02x' % tuple(rgb),0)
def cycleColor( pl ):
global composant
global currentDirection
# debug(name,"pl:{}".format(pl))
value = currentColor[composant]
if currentDirection == UP:
target = maxVal
else:
target = minVal
value += currentDirection
currentColor[composant] = value
debug(name,"currentColor:{}".format(currentColor))
for i in range( 0, len(pl)):
if pl[i][2] != 0:
pl[i][2] = rgb2int( currentColor)
# change the composant if target reached
if value <= target and currentDirection == DOWN or value >= target and currentDirection == UP :
composant = random.randint( 0,2)
value = currentColor[composant]
if value == 0 :
currentDirection = UP
else:
currentDirection = DOWN
#debug( "pl:{}".format(pl))
return pl
try:
while True:
start = time.time()
line = sys.stdin.readline()
if line == "":
time.sleep(0.01)
line = line.rstrip('\n')
pointsList = ast.literal_eval(line)
# Do the filter
result = cycleColor( pointsList )
print( result, flush=True )
looptime = time.time() - start
# debug(name+" looptime:"+str(looptime))
if( looptime < optimal_looptime ):
time.sleep( optimal_looptime - looptime)
# debug(name+" micro sleep:"+str( optimal_looptime - looptime))
except EOFError:
debug(name+" break")# no more information

174
filters/kaleidoscope.py Executable file
View File

@ -0,0 +1,174 @@
#!/usr/bin/python3
# -*- coding: utf-8 -*-
# -*- mode: Python -*-
'''
kaleidoscop
v0.1.0
A simple effect : mirror a quadrant of the input
LICENCE : CC
by Sam Neurohack
'''
from __future__ import print_function
import sys
import ast
import os
import argparse
ljpath = r'%s' % os.getcwd().replace('\\','/')
sys.path.append(ljpath +'/../libs/')
sys.path.append(ljpath +'/libs/')
import time
name = "filters::kaleidoscope"
argsparser = argparse.ArgumentParser(description="Redis exporter LJ")
argsparser.add_argument("-x","--centerX",help="geometrical center X position",default=400,type=int)
argsparser.add_argument("-y","--centerY",help="geometrical center Y position",default=400,type=int)
argsparser.add_argument("-f","--fps",help="Frame Per Second",default=30,type=int)
argsparser.add_argument("-v","--verbose",action="store_true",help="Verbose")
args = argsparser.parse_args()
fps = args.fps
centerX = args.centerX
centerY = args.centerY
verbose = args.verbose
optimal_looptime = 1 / fps
def debug(*args, **kwargs):
if( verbose == False ):
return
print(*args, file=sys.stderr, **kwargs)
def kaleidoscope( pl ):
# Stage 1: Crop points in single quadrant
quad1 = []
# Iterate trough the segments
for i in range( 0, len(pl) ):
#debug(name+" point #", i)
currentpoint = cp = pl[i]
cx,cy,cc = [cp[0],cp[1],cp[2]]
# Exception: escape early if last point
if i == len(pl) - 1:
if cx >= centerX and cy >= centerY :
quad1.append( currentpoint )
break
# Search for the couple of points
nextpoint = pl[i+1]
nx,ny,nc = [nextpoint[0],nextpoint[1],nextpoint[2]]
rect=[[cx,cy],[cx,ny],[nx,ny],[nx,cy]]
right = wrong = 0
#debug(name+" rect: ", rect,"curr",currentpoint,"next",nextpoint )
# Enumerate the points in rectangle to see
# how many right / wrong there are
# either to add or skip early
for iterator, p in enumerate(rect):
if p[0] >= centerX and p[1] >= centerY:
right += 1
else:
#if p[0] <= centerX and p[1] <= centerY:
wrong += 1
# If all rectangle points are in the right quadrant, Add and Skip
if right == 4:
quad1.append(pl[i])
#debug(name+" found valid point", pl[i])
continue
# If all rectangle points in wrong quadrant, Skip
if wrong == 4:
#debug(name+" found bad point", pl[i])
continue
# Find the (x,y) intersections
#
#debug(name+" Looking for crossing point between ("+str(cx)+","+str(cy)+") and ("+str(nx)+","+str(ny)+")")
delta=[ nx - cx, ny - cy ]
#debug(name+" delta:",delta)
crossX = None
crossY = None
absnewX = 0
absnewY = 0
# If one point has negative x, search y axis crossing
if cx < centerX or nx < centerX:
if delta[0] == 0 :
delta[0] = 0.0000001
v=[ delta[0]/abs(delta[0]), delta[1]/abs(delta[0]) ]
absnewX = abs( centerX - cx )
#print("on y axis, v=",str(v)," and absnewX=",str(absnewX))
crossX = [( absnewX*v[0] + cx ),( absnewX*v[1]+cy ), nc]
# If one point has negative y, search x axis crossing
if cy < centerY or ny < centerY:
if delta[1] == 0 :
delta[1] = 0.0000001
v=[ delta[0]/abs(delta[1]), delta[1]/abs(delta[1])]
absnewY = abs( centerY - cy )
#print("on x axis, v=",str(v)," and absnewY=",str(absnewY))
crossY = [( absnewY*v[0] + cy ),( absnewY*v[1]+cy ), nc]
# Inject in order
# If current point is the quadrant, add it
if cx >= centerX and cy >= centerY :
quad1.append( currentpoint )
# If absnewX smaller, it is closest to currentPoint
if absnewX < absnewY:
if None != crossX : quad1.append( crossX )
if None != crossY : quad1.append( crossY )
else :
if None != crossY : quad1.append( crossY )
if None != crossX : quad1.append( crossX )
# Add a black point at the end
#lastQuad1Point = quad1[-1]
#quad1.append( [lastQuad1Point[0],lastQuad1Point[1],0] )
## Stage 2 : Mirror points
#
quad2 = []
# quad2 = vertical symetric of quad1
for iterator in range( len(quad1) -1 , -1, -1):
point = quad1[iterator]
quad2.append([ point[0], 2*centerY - point[1], point[2] ])
# quad3 is the merge of 1 and 2
quad3 = quad1 + quad2
# quad4 is the horizontal symetric of quad3
quad4 = []
for iterator in range( len(quad3) -1, -1, -1):
point = quad3[iterator]
quad4.append([ 2*centerX - point[0], point[1], point[2] ])
#debug(name+" quad1:",quad1)
#debug(name+" quad2:", quad2 )
#debug(name+" quad3:", quad3 )
#debug(name+" quad4:", quad4 )
return quad3+quad4
try:
while True:
start = time.time()
line = sys.stdin.readline()
if line == "":
time.sleep(0.01)
line = line.rstrip('\n')
pointsList = ast.literal_eval(line)
# Do the filter
result = kaleidoscope( pointsList )
print( result, flush=True )
looptime = time.time() - start
# debug(name+" looptime:"+str(looptime))
if( looptime < optimal_looptime ):
time.sleep( optimal_looptime - looptime)
# debug(name+" micro sleep:"+str( optimal_looptime - looptime))
except EOFError:
debug(name+" break")# no more information

300
filters/redilysis.py Executable file
View File

@ -0,0 +1,300 @@
#!/usr/bin/python3
# -*- coding: utf-8 -*-
# -*- mode: Python -*-
'''
redilysis
v0.1.0
A complex effect that depends on redis keys for audio analysis
see https://git.interhacker.space/teamlase/redilysis for more informations
about the redilysis project
LICENCE : CC
by cocoa
'''
from __future__ import print_function
import argparse
import ast
import os
import math
import random
import redis
import sys
import time
name = "filters::redilysis"
def debug(*args, **kwargs):
if( verbose == False ):
return
print(*args, file=sys.stderr, **kwargs)
def msNow():
return time.time()
# The list of available modes => redis keys each requires to run
oModeList = {
"rms_noise": ["rms"],
"rms_size": ["rms"],
"bpm_size": ["bpm"],
"bpm_detect_size": ["bpm","bpm_delay","bpm_sample_interval","beats"]
}
CHAOS = 1
REDISLATENCY = 30
REDIS_FREQ = 300
# General Args
argsparser = argparse.ArgumentParser(description="Redilysis filter")
argsparser.add_argument("-v","--verbose",action="store_true",help="Verbose")
# Redis Args
argsparser.add_argument("-i","--ip",help="IP address of the Redis server ",default="127.0.0.1",type=str)
argsparser.add_argument("-p","--port",help="Port of the Redis server ",default="6379",type=str)
argsparser.add_argument("-s","--redis-freq",help="Query Redis every x (in milliseconds). Default:{}".format(REDIS_FREQ),default=REDIS_FREQ,type=int)
# General args
argsparser.add_argument("-x","--centerX",help="geometrical center X position",default=400,type=int)
argsparser.add_argument("-y","--centerY",help="geometrical center Y position",default=400,type=int)
argsparser.add_argument("-f","--fps",help="Frame Per Second",default=30,type=int)
# Modes And Common Modes Parameters
argsparser.add_argument("-l","--redisLatency",help="Latency in ms to substract. Default:{}".format(REDISLATENCY),default=REDISLATENCY,type=float)
argsparser.add_argument("-m","--modelist",required=True,help="Comma separated list of modes to use from: {}".format("i, ".join(oModeList.keys())),type=str)
argsparser.add_argument("--chaos",help="How much disorder to bring. High value = More chaos. Default {}".format(CHAOS), default=CHAOS, type=str)
args = argsparser.parse_args()
ip = args.ip
port = args.port
redisFreq = args.redis_freq / 1000
verbose = args.verbose
fps = args.fps
centerX = args.centerX
centerY = args.centerY
redisLatency = args.redisLatency
chaos = float(args.chaos)
optimal_looptime = 1 / fps
modeList = args.modelist.split(",")
redisKeys = []
for mode in modeList:
if not mode in oModeList:
print("Mode '{}' is invalid. Exiting.".format(mode))
sys.exit(2)
redisKeys += oModeList[mode]
redisKeys = list(set(redisKeys))
debug(name,"Redis Keys:{}".format(redisKeys))
redisData = {}
redisLastHit = msNow() - 99999
r = redis.Redis(
host=ip,
port=port)
# Records the last bpm
tsLastBeat = time.time()
def gauss(x, mu, sigma):
return( math.exp(-math.pow((x-mu),2)/(2*math.pow(sigma,2))/math.sqrt(2*math.pi*math.pow(sigma,2))))
previousPTTL = 0
tsNextBeatsList = []
def bpmDetect( ):
"""
An helper to compute the next beat time in milliseconds
Returns True if the cache was updated
"""
global tsNextBeatsList
global previousPTTL
global redisLastHit
global redisLatency
# Get the redis PTTL value for bpm
PTTL = redisData["bpm_pttl"]
# Skip early if PTTL < 0
if PTTL < 0 :
debug(name,"bpmDetect skip detection : PTTL expired for 'bpm' key")
return False
# Skip early if the record hasn't been rewritten
if PTTL <= previousPTTL :
previousPTTL = PTTL
#debug(name,"bpmDetect skip detection : {} <= {}".format(PTTL, previousPTTL))
return False
debug(name,"bpmDetect running detection : {} > {}".format(PTTL, previousPTTL))
previousPTTL = PTTL
# Skip early if beat list is empty
beatsList = ast.literal_eval(redisData["beats"])
tsNextBeatsList = []
if( len(beatsList) == 0 ):
return True
# Read from redis
bpm = float(redisData["bpm"])
msBpmDelay = float(redisData["bpm_delay"])
samplingInterval = float(redisData["bpm_sample_interval"])
# Calculate some interpolations
lastBeatTiming = float(beatsList[len(beatsList) - 1])
msPTTLDelta = 2 * samplingInterval - float(PTTL)
sPerBeat = 60 / bpm
lastBeatDelay = msBpmDelay - lastBeatTiming*1000 + msPTTLDelta
countBeatsPast = math.floor( (lastBeatDelay / 1000) / sPerBeat)
#debug(name,"bpmDetect lastBeatTiming:{}\tmsPTTLDelta:{}\tsPerBeat:{}".format(lastBeatTiming,msPTTLDelta,sPerBeat))
#debug(name,"lastBeatDelay:{}\t countBeatsPast:{}".format(lastBeatDelay, countBeatsPast))
for i in range( countBeatsPast, 1000):
beatTime = i * sPerBeat - lastBeatTiming
if beatTime < 0:
continue
if beatTime * 1000 > 2 * samplingInterval :
break
#debug(name, "bpmDetect beat add beatTime:{} redisLastHit:{}".format(beatTime, redisLastHit))
tsNextBeatsList.append( redisLastHit + beatTime - redisLatency/1000)
debug(name, "bpmDetect new tsNextBeatsList:{}".format(tsNextBeatsList))
return True
def bpm_detect_size( pl ):
bpmDetect()
# Find the next beat in the list
tsNextBeat = 0
now = time.time()
msNearestBeat = None
msRelativeNextBTList = list(map( lambda a: abs(now - a) * 1000, tsNextBeatsList))
msToBeat = min( msRelativeNextBTList)
#debug(name,"bpm_detect_size msRelativeNextBTList:{} msToBeat:{}".format(msRelativeNextBTList,msToBeat))
# Calculate the intensity based on bpm coming/leaving
# The curb is a gaussian
mu = 15
intensity = gauss( msToBeat, 0 , mu)
#debug(name,"bpm_size","mu:{}\t msToBeat:{}\tintensity:{}".format(mu, msToBeat, intensity))
if msToBeat < 20:
debug(name,"bpm_detect_size kick:{}".format(msToBeat))
pass
for i, point in enumerate(pl):
ref_x = point[0]-centerX
ref_y = point[1]-centerY
#debug(name,"In new ref x:{} y:{}".format(point[0]-centerX,point[1]-centerY))
angle=math.atan2( point[0] - centerX , point[1] - centerY )
l = ref_y / math.cos(angle)
new_l = l * intensity
#debug(name,"bpm_size","angle:{} l:{} new_l:{}".format(angle,l,new_l))
new_x = math.sin(angle) * new_l + centerX
new_y = math.cos(angle) * new_l + centerY
#debug(name,"x,y:({},{}) x',y':({},{})".format(point[0],point[1],new_x,new_y))
pl[i][0] = new_x
pl[i][1] = new_y
#debug( name,"bpm_detect_size output:{}".format(pl))
return( pl );
def bpm_size( pl ):
global tsLastBeat
bpm = float(redisData["bpm"])
# msseconds ber beat
msPerBeat = int(60 / bpm * 1000)
# Calculate the intensity based on bpm coming/leaving
# The curb is a gaussian
mu = math.sqrt(msPerBeat)
msTimeToLastBeat = (time.time() - tsLastBeat) * 1000
msTimeToNextBeat = (msPerBeat - msTimeToLastBeat)
intensity = gauss( msTimeToNextBeat, 0 , mu)
debug(name,"bpm_size","msPerBeat:{}\tmu:{}".format(msPerBeat, mu))
debug(name,"bpm_size","msTimeToLastBeat:{}\tmsTimeToNextBeat:{}\tintensity:{}".format(msTimeToLastBeat, msTimeToNextBeat, intensity))
if msTimeToNextBeat <= 0 :
tsLastBeat = time.time()
for i, point in enumerate(pl):
ref_x = point[0]-centerX
ref_y = point[1]-centerY
#debug(name,"In new ref x:{} y:{}".format(point[0]-centerX,point[1]-centerY))
angle=math.atan2( point[0] - centerX , point[1] - centerY )
l = ref_y / math.cos(angle)
new_l = l * intensity
#debug(name,"bpm_size","angle:{} l:{} new_l:{}".format(angle,l,new_l))
new_x = math.sin(angle) * new_l + centerX
new_y = math.cos(angle) * new_l + centerY
#debug(name,"x,y:({},{}) x',y':({},{})".format(point[0],point[1],new_x,new_y))
pl[i][0] = new_x
pl[i][1] = new_y
#debug( name,"bpm_noise output:{}".format(pl))
return pl
def rms_size( pl ):
rms = float(redisData["rms"])
for i, point in enumerate(pl):
ref_x = point[0]-centerX
ref_y = point[1]-centerY
debug(name,"In new ref x:{} y:{}".format(point[0]-centerX,point[1]-centerY))
angle=math.atan2( point[0] - centerX , point[1] - centerY )
l = ref_y / math.cos(angle)
debug(name,"angle:{} l:{}".format(angle,l))
new_l = l + rms * chaos
new_x = math.sin(angle) * new_l + centerX
new_y = math.cos(angle) * new_l + centerY
debug(name,"x,y:({},{}) x',y':({},{})".format(point[0],point[1],new_x,new_y))
pl[i][0] = new_x
pl[i][1] = new_y
#debug( name,"rms_noise output:{}".format(pl))
return pl
def rms_noise( pl ):
rms = float(redisData["rms"])
debug(name, "pl:{}".format(pl))
for i, point in enumerate(pl):
#debug(name,"rms_noise chaos:{} rms:{}".format(chaos, rms))
xRandom = random.uniform(-1,1) * rms * chaos
yRandom = random.uniform(-1,1) * rms * chaos
#debug(name,"rms_noise xRandom:{} yRandom:{}".format(xRandom, yRandom))
pl[i][0] += xRandom
pl[i][1] += yRandom
#debug( name,"rms_noise output:{}".format(pl))
return pl
def refreshRedis():
global redisLastHit
global redisData
# Skip if cache is sufficent
diff = msNow() - redisLastHit
if diff < redisFreq :
#debug(name, "refreshRedis not updating redis, {} < {}".format(diff, redisFreq))
pass
else:
#debug(name, "refreshRedis updating redis, {} > {}".format(diff, redisFreq))
redisLastHit = msNow()
for key in redisKeys:
redisData[key] = r.get(key).decode('ascii')
#debug(name,"refreshRedis key:{} value:{}".format(key,redisData[key]))
# Only update the TTLs
if 'bpm' in redisKeys:
redisData['bpm_pttl'] = r.pttl('bpm')
#debug(name,"refreshRedis key:bpm_ttl value:{}".format(redisData["bpm_pttl"]))
#debug(name,"redisData:{}".format(redisData))
return True
try:
while True:
refreshRedis()
start = time.time()
line = sys.stdin.readline()
if line == "":
time.sleep(0.01)
line = line.rstrip('\n')
pointsList = ast.literal_eval(line)
# Do the filter
for mode in modeList:
pointsList = locals()[mode](pointsList)
print( pointsList, flush=True )
looptime = time.time() - start
# debug(name+" looptime:"+str(looptime))
if( looptime < optimal_looptime ):
time.sleep( optimal_looptime - looptime)
# debug(name+" micro sleep:"+str( optimal_looptime - looptime))
except EOFError:
debug(name+" break")# no more information

186
filters/redilysis_colors.py Normal file
View File

@ -0,0 +1,186 @@
#!/usr/bin/python3
# -*- coding: utf-8 -*-
# -*- mode: Python -*-
'''
redilysis colors
v0.1.0
A complex effect that depends on redis keys for audio analysis
see https://git.interhacker.space/teamlase/redilysis for more informations
about the redilysis project
LICENCE : CC
by cocoa
'''
from __future__ import print_function
import argparse
import ast
import os
import math
import random
import redis
import sys
import time
name = "filters::redilysis_colors"
def debug(*args, **kwargs):
if( verbose == False ):
return
print(*args, file=sys.stderr, **kwargs)
def msNow():
return time.time()
# The list of available modes => redis keys each requires to run
oModeList = {
}
def rgb2int(rgb):
return int('0x%02x%02x%02x' % tuple(rgb),0)
def int2rgb(intcode):
#hexcode = hex(intcode)[2:]
hexcode = '{0:06X}'.format(intcode)
return tuple(int(hexcode[i:i+2], 16) for i in (0, 2, 4))
#return tuple(map(ord,hexcode[1:].decode('hex')))
CHAOS = 1
REDIS_FREQ = 100
# General Args
argsparser = argparse.ArgumentParser(description="Redilysis filter")
argsparser.add_argument("-f","--fps",help="Frame Per Second",default=30,type=int)
argsparser.add_argument("-v","--verbose",action="store_true",help="Verbose")
# Redis Args
argsparser.add_argument("-i","--ip",help="IP address of the Redis server ",default="127.0.0.1",type=str)
argsparser.add_argument("-p","--port",help="Port of the Redis server ",default="6379",type=str)
argsparser.add_argument("-s","--redis-freq",help="Query Redis every x (in milliseconds). Default:{}".format(REDIS_FREQ),default=REDIS_FREQ,type=int)
# Modes And Common Modes Parameters
#argsparser.add_argument("-m","--modelist",required=False,help="Comma separated list of modes to use from: {}".format("i, ".join(oModeList.keys())),type=str)
argsparser.add_argument("-c","--chaos",help="How much disorder to bring. High value = More chaos. Default {}".format(CHAOS), default=CHAOS, type=float)
args = argsparser.parse_args()
fps = args.fps
ip = args.ip
port = args.port
redisFreq = args.redis_freq / 1000
verbose = args.verbose
chaos = float(args.chaos)
optimal_looptime = 1 / fps
max_width = 800
max_height = 800
redisKeys = ["rms","spectrum_10","spectrum_120"]
debug(name,"Redis Keys:{}".format(redisKeys))
redisData = {}
redisLastHit = msNow() - 99999
r = redis.Redis(
host=ip,
port=port)
def refreshRedis():
global redisData
for key in redisKeys:
try:
redisData[key] = ast.literal_eval(r.get(key).decode('ascii'))
except :
debug("Error when reading redis key '{}".format(key))
def gauss(x, mu, sigma):
return( math.exp(-math.pow((x-mu),2)/(2*math.pow(sigma,2))/math.sqrt(2*math.pi*math.pow(sigma,2))))
spect10Correct = [
6.0,
1.5,
1.0,
1.0,
1.0,
1.0,
1.0,
0.8,
0.6,
0.5,
]
def default( pl ):
global redisData
spect = redisData["spectrum_10"]
debug(name, "spect:{}".format(spect))
new_list = []
# We want to color points that are on left and right when high is strong
# i.e. the farther the distance from spectrum, the higher notes have influence
# power = 0-1
# x = 800 spec[2]= 6.0 spec[7]=0.0 power=0.0
# x = 0 spec[2]= 6.0 spec[7]=0.0 power=0.0
# x = 0 spec[2]= 1.0 spec[7]=0.5 power=1.0
# dist 0 = 1
# 400 - 400 : maxW/2 -x
# 399 = -1 : x - 400
# 401 = 1
# x = 400 spec[2]= 6.0 spec[7]=0.0 power=1.0
# x = 400 spec[2]= 1.0 spec[7]=0.5 power=0.0
for i, point in enumerate(pl):
ocolor = pl[i][2]
if ocolor == 0 :
new_list.append(point)
continue
colorTuple = int2rgb(ocolor)
x = point[0]
dist = abs(x - max_width/2)
key = int(2* dist / max_width * 8)
power = spect[key] / spect10Correct[key] * chaos
color = []
for i in colorTuple:
new_color = int(i * power)
if new_color > 255 :
new_color = 255
if new_color < 0 :
new_color = 0
color.append( new_color )
color = rgb2int(tuple(color))
point[2] = color
new_list.append(point)
#debug(name,"x:{}\t dist:{}\t key:{}\t power:{}\t ocolor:{}\t color:{}".format(point[0], dist, key,power, ocolor, pl[i][2]))
debug( name,"rms_noise output:{}".format(new_list))
return new_list
try:
while True:
refreshRedis()
start = time.time()
line = sys.stdin.readline()
if line == "":
time.sleep(0.01)
line = line.rstrip('\n')
pointsList = ast.literal_eval(line)
# Do the filter
pointsList = default(pointsList)
print( pointsList, flush=True )
looptime = time.time() - start
# debug(name+" looptime:"+str(looptime))
if( looptime < optimal_looptime ):
time.sleep( optimal_looptime - looptime)
# debug(name+" micro sleep:"+str( optimal_looptime - looptime))
except EOFError:
debug(name+" break")# no more information

2407
generators/159.gml Executable file

File diff suppressed because it is too large Load Diff

2791
generators/160.gml Executable file

File diff suppressed because it is too large Load Diff

2873
generators/OSC3.py Normal file

File diff suppressed because it is too large Load Diff

53
generators/blank.py Executable file
View File

@ -0,0 +1,53 @@
#!/usr/bin/python3
# -*- coding: utf-8 -*-
# -*- mode: Python -*-
'''
Send only black points
v0.1.0
Use it to test your filters and outputs
LICENCE : CC
by cocoa
'''
from __future__ import print_function
import time
import argparse
import sys
name="generator::dummy"
def debug(*args, **kwargs):
if( verbose == False ):
return
print(*args, file=sys.stderr, **kwargs)
argsparser = argparse.ArgumentParser(description="dummy generator")
argsparser.add_argument("-f","--fps",help="Frame Per Second",default=30,type=int)
argsparser.add_argument("-v","--verbose",action="store_true",help="Verbose output")
args = argsparser.parse_args()
fps=args.fps
verbose=args.verbose
optimal_looptime = 1 / fps
debug(name+" optimal looptime "+str(optimal_looptime))
shape = [[400,400,0],[400,400,64],[400,400,0]]
while True:
start = time.time()
print(shape, flush=True);
looptime = time.time() - start
if( looptime < optimal_looptime ):
time.sleep( optimal_looptime - looptime)
debug(name+" micro sleep:"+str( optimal_looptime - looptime))

BIN
generators/book2.ild Executable file

Binary file not shown.

54
generators/brmlab1.svg Executable file
View File

@ -0,0 +1,54 @@
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<svg
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:cc="http://creativecommons.org/ns#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:svg="http://www.w3.org/2000/svg"
xmlns="http://www.w3.org/2000/svg"
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
xml:space="preserve"
height="53"
width="299.96875"
version="1.1"
id="svg2"
inkscape:version="0.48.0 r9654"
sodipodi:docname="brmlab1.svg"
inkscape:export-filename="/home/prusnak/work/scm/laserdisplay/svglaser/templates/template3.svg.png"
inkscape:export-xdpi="200"
inkscape:export-ydpi="200"><defs
id="defs2988" /><metadata
id="metadata78"><rdf:RDF><cc:Work
rdf:about=""><dc:format>image/svg+xml</dc:format><dc:type
rdf:resource="http://purl.org/dc/dcmitype/StillImage" /><dc:title /></cc:Work></rdf:RDF></metadata><sodipodi:namedview
pagecolor="#ffffff"
bordercolor="#666666"
borderopacity="1"
objecttolerance="10"
gridtolerance="10"
guidetolerance="10"
inkscape:pageopacity="0"
inkscape:pageshadow="2"
inkscape:window-width="1024"
inkscape:window-height="689"
id="namedview76"
showgrid="false"
inkscape:zoom="1"
inkscape:cx="-2.5851173"
inkscape:cy="-55.600814"
inkscape:window-x="0"
inkscape:window-y="25"
inkscape:window-maximized="1"
inkscape:current-layer="svg2"
inkscape:snap-bbox="true"
inkscape:snap-global="true"
fit-margin-top="0"
fit-margin-left="0"
fit-margin-right="0"
fit-margin-bottom="0" />
<path
id="path20"
style="fill:none;stroke:#000000;stroke-opacity:1"
d="m 137.17375,22.4425 c 0,-1.815 5.24,-4.345 13.73375,-4.345 3.94875,0 7.73,0.59 10.37875,1.62 2.085,0.81125 3.32875,1.83 3.32875,2.725 0,9.0725 0.0188,30.05375 0.0188,30.05375 l 5.87245,-0.004 c 0,-10e-4 -0.0175,-20.97875 -0.0175,-30.05 0,-2.035 -0.9175,-5.805 -7.0725,-8.2 -3.35125,-1.3025 -7.7925,-2.01875 -12.50875,-2.01875 -4.71625,0 -9.15875,0.71625 -12.50875,2.01875 -1.7975,0.7 -3.16375,1.50625 -4.175,2.3625 -1.01,-0.8475 -2.3675,-1.66875 -4.15,-2.3625 -3.34875,-1.3025 -7.79125,-2.01875 -12.50875,-2.01875 -4.715,0 -9.15625,0.71625 -12.50625,2.01875 -6.15625,2.395 -7.075,6.165 -7.075,8.2 0,9.8775 -0.0163,30.04875 -0.0163,30.04875 l 5.87375,0.005 c 0,0 0.0175,-20.17375 0.0175,-30.05375 0,-1.815 5.215,-4.345 13.70625,-4.345 3.94875,0 7.73125,0.59 10.38,1.62 2.08375,0.81125 3.32875,1.83 3.32875,2.725 0,9.0725 0.0175,30.0575 0.0175,30.0575 l 5.87375,-0.005 c 0,0 0.009,-20.98125 0.009,-30.0525 M 93.61125,18.3922 c -1.0075,-1.47125 -2.7675,-2.98 -5.79125,-4.15625 -3.35,-1.3025 -7.79375,-2.02 -12.50875,-2.02 -4.715,0 -9.15875,0.7175 -12.5075,2.02 C 56.64875,16.63 55.73,20.4 55.73,22.435 c 0,9.87875 -0.0175,30.04875 -0.0175,30.04875 l 5.87375,0.005 c 0,0 0.0175,-20.17375 0.0175,-30.05375 0,-1.81375 5.21375,-4.345 13.7075,-4.345 3.9475,0 7.73,0.59 10.37875,1.62125 1.58875,0.6175 2.6875,1.355 3.1225,2.0675 l 4.79875,-3.38625 z m 86.2125,34.1 5.874,0 0,-52.0075 -5.874,0 0,52.0075 z m 24.45,-33.325 c -0.89625,0 -1.91375,1.24375 -2.725,3.32875 -1.03,2.64875 -1.62125,6.43125 -1.62125,10.37875 0,8.4925 2.53125,13.7075 4.34625,13.7075 7.19625,0 24.94,0.0225 31.975,0.0313 l 0,-27.44625 -31.975,0 z m 37.84875,33.32875 -2.94,-0.004 c 0,0 -25.83625,-0.035 -34.90875,-0.035 -2.035,0 -5.80625,-0.91875 -8.2,-7.07375 -1.3025,-3.35125 -2.02,-7.7925 -2.02,-12.50875 0,-4.715 0.7175,-9.1575 2.02,-12.5075 2.39375,-6.155 6.165,-7.075 8.2,-7.075 l 34.9125,0 2.91979,0.006 0.0165,39.198 z m 49.85125,-9.24125 c -0.80875,2.085 -1.82875,3.32875 -2.7225,3.32875 -7.1975,0 -24.94125,0.0225 -31.97625,0.0313 l 0,-27.4475 31.97625,0.001 c 1.81375,0 4.345,5.215 4.345,13.7075 0,3.94625 -0.5925,7.73 -1.6225,10.37875 M 297.45,20.3687 c -2.39375,-6.155 -6.165,-7.075 -8.19875,-7.075 l -31.97625,-0.002 0,-12.80625 -5.87375,0 0,52.0125 2.94125,-0.004 c 0,0 25.83625,-0.0362 34.90875,-0.0362 2.03375,0 5.805,-0.9175 8.19875,-7.0725 1.30375,-3.35125 2.02,-7.7925 2.02,-12.50875 0,-4.715 -0.71625,-9.1575 -2.02,-12.5075 M 41.07375,43.255 c -0.80875,2.085 -1.82875,3.32875 -2.725,3.32875 -7.195,0 -24.94,0.0225 -31.97375,0.0313 l 0,-27.4475 31.97375,0.001 c 1.815,0 4.34625,5.215 4.34625,13.7075 0,3.94625 -0.5925,7.73 -1.62125,10.37875 m 5.475,-22.88625 c -2.39375,-6.155 -6.16375,-7.075 -8.2,-7.075 l -31.97375,-0.002 0,-12.80625 -5.875,0 0,52.0125 2.9425,-0.004 c 0,0 25.835,-0.0362 34.90625,-0.0362 2.03625,0 5.80625,-0.9175 8.2,-7.0725 1.30375,-3.35125 2.02,-7.7925 2.02,-12.50875 0,-4.715 -0.71625,-9.1575 -2.02,-12.5075"
inkscape:connector-curvature="0" />
</svg>

After

Width:  |  Height:  |  Size: 4.6 KiB

53
generators/brmlab2.svg Executable file
View File

@ -0,0 +1,53 @@
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<svg
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:cc="http://creativecommons.org/ns#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:svg="http://www.w3.org/2000/svg"
xmlns="http://www.w3.org/2000/svg"
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
xml:space="preserve"
height="78.96875"
width="78.96875"
version="1.1"
id="svg2"
inkscape:version="0.48.0 r9654"
sodipodi:docname="brmlab2.svg"
inkscape:export-filename="/home/prusnak/work/scm/laserdisplay/svglaser/templates/template4.svg.png"
inkscape:export-xdpi="200"
inkscape:export-ydpi="200"><defs
id="defs2994" /><metadata
id="metadata78"><rdf:RDF><cc:Work
rdf:about=""><dc:format>image/svg+xml</dc:format><dc:type
rdf:resource="http://purl.org/dc/dcmitype/StillImage" /><dc:title /></cc:Work></rdf:RDF></metadata><sodipodi:namedview
pagecolor="#ffffff"
bordercolor="#666666"
borderopacity="1"
objecttolerance="10"
gridtolerance="10"
guidetolerance="10"
inkscape:pageopacity="0"
inkscape:pageshadow="2"
inkscape:window-width="1024"
inkscape:window-height="689"
id="namedview76"
showgrid="false"
inkscape:zoom="1"
inkscape:cx="25.043829"
inkscape:cy="5.6960585"
inkscape:window-x="0"
inkscape:window-y="25"
inkscape:window-maximized="1"
inkscape:current-layer="svg2"
inkscape:snap-bbox="true"
inkscape:snap-global="true"
fit-margin-top="0"
fit-margin-left="0"
fit-margin-right="0"
fit-margin-bottom="0" />
<path
id="path3237"
style="fill:none;stroke:#000000;stroke-width:1"
d="m 20.26276,45.39193 c -1.816875,0 -3.293437,-1.4775 -3.293437,-3.29344 0,-1.81593 1.476562,-3.29437 3.293437,-3.29437 1.816875,0 3.294375,1.47844 3.294375,3.29437 0,1.81594 -1.4775,3.29344 -3.294375,3.29344 M 39.480011,0.50605 C 17.985519,0.50605 0.5,17.99425 0.5,39.48874 c 0,10.41205 4.0546519,20.20071 11.416975,27.56304 7.363668,7.36232 17.15099,11.41697 27.563036,11.41697 21.494491,0 38.982697,-17.48686 38.982697,-38.98001 C 78.461408,17.99291 60.974502,0.50605 39.480011,0.50605 m -0.09362,68.75171 c -5.945327,0 -11.681286,-1.74473 -16.588197,-5.04528 l -0.998709,-0.67022 0.765276,-0.92531 c 1.473999,-1.78685 1.350062,-4.36785 -0.289986,-6.0079 -0.844692,-0.84469 -1.96854,-1.31035 -3.163381,-1.31035 -1.037214,0 -2.046752,0.36218 -2.843313,1.01916 l -0.926513,0.76407 -0.670218,-0.9963 C 6.757481,44.32012 8.3000651,28.49238 18.341303,18.45235 c 4.199391,-4.2018 9.490142,-7.02345 15.299501,-8.16174 l 1.179198,-0.22982 0.115514,1.19484 c 0.220197,2.30425 2.13459,4.04176 4.452076,4.04176 2.317487,0 4.23188,-1.73751 4.45328,-4.04176 l 0.115513,-1.19484 1.177996,0.22982 c 5.806952,1.13829 11.098906,3.95994 15.299501,8.15933 10.040034,10.04124 11.583822,25.87018 3.668751,37.63569 l -0.670218,0.9963 -0.92531,-0.76527 c -0.798967,-0.65698 -1.807302,-1.01796 -2.845719,-1.01796 -1.194841,0 -2.317486,0.46446 -3.163381,1.30915 -1.638845,1.64005 -1.762781,4.22225 -0.289986,6.0091 l 0.764072,0.92531 -0.996302,0.67022 c -4.90691,3.30055 -10.644073,5.04528 -16.5894,5.04528 m -7.130784,-26.72605 14.281498,0 0,-6.00112 -14.281498,0 0,6.00112 z M 24.122448,30.11568 c -1.816875,0 -3.294375,-1.4775 -3.294375,-3.29344 0,-1.81593 1.4775,-3.29437 3.294375,-3.29437 1.815937,0 3.293437,1.47844 3.293437,3.29437 0,1.81594 -1.4775,3.29344 -3.293437,3.29344 m 34.387656,15.27625 c -1.815937,0 -3.294375,-1.4775 -3.294375,-3.29344 0,-1.81593 1.478438,-3.29437 3.294375,-3.29437 1.816875,0 3.294375,1.47844 3.294375,3.29437 0,1.81594 -1.4775,3.29344 -3.294375,3.29344 m -26.905937,15.1875 c -1.815938,0 -3.292501,-1.4775 -3.292501,-3.29344 0,-1.81593 1.476563,-3.29437 3.292501,-3.29437 1.816875,0 3.294374,1.47844 3.294374,3.29437 0,1.81594 -1.477499,3.29344 -3.294374,3.29344 M 54.647291,30.11568 c -1.816874,0 -3.294374,-1.4775 -3.294374,-3.29344 0,-1.81593 1.4775,-3.29437 3.294374,-3.29437 1.815938,0 3.292501,1.47844 3.292501,3.29437 0,1.81594 -1.476563,3.29344 -3.292501,3.29344 m -7.474843,30.46375 c -1.816875,0 -3.294375,-1.4775 -3.294375,-3.29344 0,-1.81593 1.4775,-3.29437 3.294375,-3.29437 1.815937,0 3.293437,1.47844 3.293437,3.29437 0,1.81594 -1.4775,3.29344 -3.293437,3.29344 m -7.775,-30.46375 c -1.816875,0 -3.294375,-1.4775 -3.294375,-3.29344 0,-1.81593 1.4775,-3.29437 3.294375,-3.29437 1.815937,0 3.293437,1.47844 3.293437,3.29437 0,1.81594 -1.4775,3.29344 -3.293437,3.29344"
inkscape:connector-curvature="0" /></svg>

After

Width:  |  Height:  |  Size: 4.5 KiB

85
generators/dummy.py Executable file
View File

@ -0,0 +1,85 @@
#!/usr/bin/python3
# -*- coding: utf-8 -*-
# -*- mode: Python -*-
'''
This is the most basic generator you can imagine: straight up static!
v0.1.0
Use it to test your filters and outputs
LICENCE : CC
by cocoa
'''
from __future__ import print_function
import time
import argparse
import sys
name="generator::dummy"
def debug(*args, **kwargs):
if( verbose == False ):
return
print(*args, file=sys.stderr, **kwargs)
argsparser = argparse.ArgumentParser(description="dummy generator")
argsparser.add_argument("-f","--fps",help="Frame Per Second",default=30,type=int)
argsparser.add_argument("-s","--speed",help="point per frame progress",default=3,type=int)
argsparser.add_argument("-v","--verbose",action="store_true",help="Verbose output")
args = argsparser.parse_args()
fps=args.fps
verbose=args.verbose
optimal_looptime = 1 / fps
debug(name+" optimal looptime "+str(optimal_looptime))
color = 16777215
square = [[100.0, 100.0, color], [100.0, 500.0, color], [500.0, 500.0, color], [500.0, 100.0, color], [100.0, 100.0, color]]
line =[]
for i in range(00,800,int(800/120)):
line.append([i, 400, color])
square = [[100.0, 100.0, color], [100.0, 500.0, color], [500.0, 500.0, color], [500.0, 100.0, color], [100.0, 100.0, color]]
mire = [
[600,600,0],
[600,600,color],
[700,600,color],
[700,700,color],
[600,700,color],
[600,600,color],
[100,100,0],
[100,100,color],
[200,100,color],
[200,200,color],
[100,200,color],
[100,100,color],
[0,0,0],
[0,0,color],
[800,0,color],
[800,800,color],
[0,800,color],
[0,0,color],
[350,400,0],
[350,400,color],
[450,400,color],
[400,350,0],
[400,350,color],
[400,450,color],
]
shape = mire
while True:
start = time.time()
print(shape, flush=True);
looptime = time.time() - start
if( looptime < optimal_looptime ):
time.sleep( optimal_looptime - looptime)
debug(name+" micro sleep:"+str( optimal_looptime - looptime))

182
generators/example.py Executable file
View File

@ -0,0 +1,182 @@
#!/usr/bin/python3
# -*- coding: utf-8 -*-
# -*- mode: Python -*-
'''
example, based on custom
v0.1.0
A copy of square.py you can modify to code your plugin.
custom1 has necessary hooks in LJ.conf, webui and so on.
LICENCE : CC
by Sam Neurohack
'''
import sys
import os
ljpath = r'%s' % os.getcwd().replace('\\','/')
# import from shell
sys.path.append(ljpath +'/../../libs/')
#import from LJ
sys.path.append(ljpath +'/libs/')
print(ljpath+'/../libs/')
import lj23layers as lj
sys.path.append('../libs')
import math
import time
import argparse
print ("")
print ("Arguments parsing if needed...")
argsparser = argparse.ArgumentParser(description="Custom1 example for LJ")
argsparser.add_argument("-v","--verbose",help="Verbosity level (0 by default)",default=0,type=int)
args = argsparser.parse_args()
# Useful variables init.
white = lj.rgb2int(255,255,255)
red = lj.rgb2int(255,0,0)
blue = lj.rgb2int(0,0,255)
green = lj.rgb2int(0,255,0)
width = 800
height = 600
centerX = width / 2
centerY = height / 2
# 3D to 2D projection parameters
fov = 256
viewer_distance = 2.2
# Anaglyph computation parameters for right and left eyes.
# algorythm come from anaglyph geo maps
eye_spacing = 100
nadir = 0.5
observer_altitude = 30000
map_layerane_altitude = 0.0
# square coordinates : vertices that compose each of the square.
vertices = [
(- 1.0, 1.0,- 1.0),
( 1.0, 1.0,- 1.0),
( 1.0,- 1.0,- 1.0),
(- 1.0,- 1.0,- 1.0)
]
face = [0,1,2,3]
#
# LJ inits
#
layer = 0
# Define properties for each drawn "element" : name, intensity, active, xy, color, red, green, blue, layer , closed
Leftsquare = lj.FixedObject('Leftsquare', True, 255, [], red, 255, 0, 0, layer , True)
Rightsquare = lj.FixedObject('Rightsquare', True, 255, [], green, 0, 255, 0, layer , True)
# 'Destination' for given layer : name, number, active, layer , scene, laser
Dest0 = lj.DestObject('0', 0, True, 0 , 0, 0) # Dest0 will send layer 0 points to scene 0, laser 0
#
# Anaglyph computation : different X coordinate for each eye
#
def LeftShift(elevation):
diff = elevation - map_layerane_altitude
return nadir * eye_spacing * diff / (observer_altitude - elevation)
def RightShift(elevation):
diff = map_layerane_altitude - elevation
return (1 - nadir) * eye_spacing * diff / (observer_altitude - elevation)
def Proj(x,y,z,angleX,angleY,angleZ):
rad = angleX * math.pi / 180
cosa = math.cos(rad)
sina = math.sin(rad)
y2 = y
y = y2 * cosa - z * sina
z = y2 * sina + z * cosa
rad = angleY * math.pi / 180
cosa = math.cos(rad)
sina = math.sin(rad)
z2 = z
z = z2 * cosa - x * sina
x = z2 * sina + x * cosa
rad = angleZ * math.pi / 180
cosa = math.cos(rad)
sina = math.sin(rad)
x2 = x
x = x2 * cosa - y * sina
y = x2 * sina + y * cosa
""" Transforms this 3D point to 2D using a perspective projection. """
factor = fov / (viewer_distance + z)
x = x * factor + centerX
y = - y * factor + centerY
return (x,y)
#
# Main
#
def Run():
Left = []
Right = []
counter =0
try:
while True:
Left = []
Right = []
x = vertices[0][0]
y = vertices[0][1]
z = vertices[0][2]
# lj tracers will "move" the laser to this first point in black, then move to the next with second point color.
# for more accuracy in dac emulator, repeat this first point.
# generate all points in square.
for point in face:
x = vertices[point][0]
y = vertices[point][1]
z = vertices[point][2]
left.append(proj(x+leftshift(z*25),y,z,0,counter,0))
right.append(proj(x+rightshift(z*25),y,z,0,counter,0))
lj.polylineonecolor(left, c = leftsquare.color , layer = leftsquare.layer, closed = leftsquare.closed)
lj.polylineonecolor(right, c = rightsquare.color , layer = rightsquare.layer, closed = rightsquare.closed)
lj.drawdests()
time.sleep(0.1)
counter += 1
if counter > 360:
counter = 0
except KeyboardInterrupt:
pass
# Gently stop on CTRL C
finally:
lj.ClosePlugin()
Run()

406
generators/fromGML.py Normal file
View File

@ -0,0 +1,406 @@
#!/usr/bin/python3
# -*- coding: utf-8 -*-
# -*- mode: Python -*-
'''
fromGML
v0.1.0
Display a GML file
See GML specs at the end.
Support the gml spec="1.0 (minimum)"
and header/client/name
and maybe one day drawing/brush/color
LICENCE : CC
by cocoa and Sam Neurohack
Heavy use of : https://github.com/kgn/pygml
'''
from __future__ import print_function
import time
import struct
import argparse
import sys
import xml.etree.ElementTree as etree
#import urllib
from datetime import datetime
import math, random
import ast
name="generator::fromgml"
def debug(*args, **kwargs):
if( verbose == False ):
return
print(*args, file=sys.stderr, **kwargs)
argsparser = argparse.ArgumentParser(description="GML file frame generator")
argsparser.add_argument("-f","--fps",help="Frame Per Second",default=30,type=int)
argsparser.add_argument("-v","--verbose",action="store_true",help="Verbose output")
argsparser.add_argument("-g","--gml",help=".gml file",default="147.gml",type=str)
argsparser.add_argument("-t","--total",help="Total time",default=32,type=int)
argsparser.add_argument("-m","--mode",help="once or anim mode",default="anim",type=str)
argsparser.add_argument("-s","--skip",help="% of points to skip",default="0.4",type=float)
argsparser.add_argument("-r","--rot",help="(angleX, angleY, angleZ) in degree",default="(0,0,270)",type=str)
args = argsparser.parse_args()
fps=args.fps
verbose=args.verbose
mode = args.mode
optimal_looptime = 1 / fps
angles = ast.literal_eval(args.rot)
debug(name+" optimal frame time "+str(optimal_looptime))
TOTAL_TIME=float(args.total)
TIME_STRETCH = 1
ZOOM=1.0
DELTA = 7
width = 500
height = 500
centerX = width / 2
centerY = height / 2
# 3D to 2D projection parameters
fov = 200
viewer_distance = 2.2
skip = args.skip
#skip is the percentage of points that we ignore in order to render
# faster in the laser display. Unfortunately we are not able to render too
# complex content in our display without resulting in a lot of blinking.
# return a list with all points
def readGML(filename):
outputData = []
tree = etree.parse(filename)
root = tree.getroot()
'''
if (root.tag.lower() != "gml"):
print("Not a GML file.")
return
'''
#~
tag = root.find("tag")
header = tag.find("header")
if header != None:
client = header.find("client")
if client != None:
debug("Graffiti name :", client.find("name").text)
drawing = tag.find("drawing")
environment = header.find("environment")
if not environment:
environment = tag.find("environment")
#screenBounds = environment.find("screenBounds")
#globalScale = (1.0,1.0,1.0)
#dim = (float(screenBounds.find("x").text) * globalScale[0], float(screenBounds.find("y").text) * globalScale[1], float(screenBounds.find("z").text) * globalScale[2])
#dim = (40.0,40.0,40.0)
#~
strokes = drawing.findall("stroke")
for stroke in strokes:
pointsEl = stroke.findall("pt")
for pointEl in pointsEl:
x = float(pointEl.find("x").text) - 0.5
y = float(pointEl.find("y").text) - 0.5
z = float(pointEl.find("z").text) - 0.5
transpoint = Rot(x,y,z,angles[0],angles[1],angles[2])
x = (transpoint[0]*ZOOM*width/2) + (width/2)
y = (transpoint[1]*ZOOM*height/2) + (height/2)
z = transpoint[2]
# WIDTH/2 + ZOOM*point[0]*WIDTH/2, HEIGHT/2 + ZOOM*point[1]*HEIGHT/2
time = float(pointEl.find("time").text)
outputData.append([x,y,z,time])
#print(outputData)
return outputData
def Rot(x, y, z, angleX, angleY, angleZ):
rad = angleX * math.pi / 180
cosa = math.cos(rad)
sina = math.sin(rad)
y2 = y
y = y2 * cosa - z * sina
z = y2 * sina + z * cosa
rad = angleY * math.pi / 180
cosa = math.cos(rad)
sina = math.sin(rad)
z2 = z
z = z2 * cosa - x * sina
x = z2 * sina + x * cosa
rad = angleZ * math.pi / 180
cosa = math.cos(rad)
sina = math.sin(rad)
x2 = x
x = x2 * cosa - y * sina
y = x2 * sina + y * cosa
return (x,y,z)
#[x,y,z,time]
def iterPoints():
for point in gml:
yield point
# Play once during total time arg
def Once():
debug(name,"play once mode")
shape = []
for point in gml:
shape.append([point[0],point[1], 65535])
debug(name + str(shape))
t0=datetime.now()
deltat=0
while deltat<TOTAL_TIME:
start = time.time()
print(shape, flush=True);
looptime = time.time() - start
if( looptime < optimal_looptime ):
time.sleep( optimal_looptime - looptime)
debug(name+" micro sleep:"+str( optimal_looptime - looptime))
delta = datetime.now() - t0
deltat = delta.seconds + delta.microseconds/1000000.0
deltat = float(deltat)/TIME_STRETCH
# Anim
def Anim():
debug(name+" anim mode")
t0=datetime.now()
deltat = 0
while deltat<TOTAL_TIME:
delta = datetime.now() - t0
deltat = delta.seconds + delta.microseconds/1000000.0
deltat = float(deltat)/TIME_STRETCH
if deltat > TOTAL_TIME:
t0=datetime.now()
first=True
shape = []
for point in iterPoints():
if point[3] <= deltat and deltat <= point[3]+DELTA and random.random()<(1-skip):
if first:
first=False
else:
#LD.draw_point(WIDTH/2 + ZOOM*point.x*WIDTH/2, HEIGHT/2 + ZOOM*point.y*HEIGHT/2)
shape.append([point[0], point[1], 65535])
print(shape, flush=True);
debug(name + " Reading : "+args.gml+" in "+mode+" mode.")
gml = readGML(args.gml)
debug(name + " total points : "+ str(len(gml)))
if mode =="once":
Once()
else:
Anim()
debug(name + " ends.")
exit()
'''
<gml spec="1.0 (minimum)">
<tag>
<drawing>
<stroke>
<pt>
<x>0.0</x>
<y>0.0</y>
</pt>
</stroke>
</drawing>
</tag>
</gml>
<gml spec="1.0">
<tag>
<header>
<client> <!-- how, who, what and where -->
<name>Laser Tag</name> <!-- application name -->
<version>2.0</version> <!-- application version -->
<username>MyUserName</username> <!-- user name on 000000book.com, optional -->
<permalink>http://000000book.com/data/156/</permalink> <!-- URL to .gml data on 000000book.com, optional -->
<keywords>katsu,paris,2010</keywords> <!-- comma-separated -->
<uniquekey>28sks922ks992</uniquekey> <!-- iPhone uuid, MAC address, etc -->
<ip>192.168.1.1</ip>
<time>1928372722</time> <!-- unixtime -->
<location>
<lon>-39.392922</lon>
<lat>53.29292</lat>
</location>
</client>
<!-- This is all stuff that relates to the orientation and dimensions of the client -->
<!-- So that we know how to re-map the 0.0-1.0 coordinates that come in for each point -->
<!-- Also for figuring out the down vector for devices with accelerometers and how that effects drips -->
<!-- All numbers should be between 0.0 - 1.0 -->
<environment>
<offset>
<x>0.0</x>
<y>0.0</y>
<z>0.0</z>
</offset>
<rotation>
<x>0.0</x>
<y>0.0</y>
<z>0.0</z>
</rotation>
<up>
<x>0.0</x> <!-- commonly up for iphone apps -->
<y>-1.0</y> <!-- most common -->
<z>0.0</z>
</up>
<screenbounds> <!-- use this as your multipler to get 0.0 to 1.0 back to right size - pts should never go off 0.0 to 1.0 -->
<x>1024</x>
<y>768</y>
<z>0</z>
</screenbounds>
<origin>
<x>0</x>
<y>0</y>
<z>0</z>
</origin>
<realscale> <!-- how these units relate to real world units - good for laser tag -->
<x>1000</x>
<y>600</y>
<z>0</z>
<unit>cm</unit>
</realscale>
<audio>youraudio.mp3</audio> <!-- path to audio file -->
<background>yourimage.jpg</background> <!-- path to image file -->
</environment>
</header>
<drawing>
<!-- for all stroke and movement stuff it helps to have everything inside the stroke tag -->
<!-- this way it is easy to get a sense of order to events -->
<stroke isdrawing="false"> <!-- for non drawing mouse movements -->
<pt>
<x>0.0</x>
<y>0.0</y>
<z>0.0</z> <!--this is optional -->
<t>0.013</t> <!-- time is optional too -->
<!-- NOTE: older versions of GML use <time> instead of <t> -->
</pt>
</stroke>
<stroke> <!-- by default stroke drawing is true -->
<!-- each stroke could be drawn with a different brush -->
<!-- if no brush tag is found for a stroke then it inherits the previous settings -->
<brush>
<mode>0</mode> <!-- same as uniqueStyleID but an internal reference -->
<uniquestyleid>LaserTagArrowLetters</uniquestyleid> <!-- unique blackbook string for your style -->
<!-- see note about spec at the bottom - like unique style but with extra info -->
<spec>http://aurltodescribethebrushspec.com/someSpec.xml</spec>
<width>10</width>
<speedtowidthratio>1.5</speedtowidthratio> <!-- put 0 for fixed width -->
<dripamnt>1.0</dripamnt>
<dripspeed>1.0</dripspeed>
<layerabsolute>0</layerabsolute> <!--Think photoshop layers-->
<color>
<r>255</r>
<g>255</g>
<b>255</b>
<a>255</a> <!-- optional -->
</color>
<dripvecrelativetoup> <!-- what angle do our drips go in relation to our up vector -->
<x>0</x>
<y>1</y>
<z>0</z>
</dripvecrelativetoup>
</brush>
<pt>
<x>0.0</x>
<y>0.0</y>
<z>0.0</z> <!--this is optional -->
<t>0.013</t> <!-- time is optional too -->
</pt>
<pt>
<x>0.0</x>
<y>0.0</y>
<z>0.0</z> <!--this is optional -->
<t>0.023</t> <!-- time is optional too -->
</pt>
</stroke>
<!-- this stroke inherits the previous stroke properties -->
<!-- but changes color and draws on the layer below -->
<stroke>
<info> <!-- optional info - more stuff soon-->
<curved>true</curved>
</info>
<brush>
<color>
<r>255</r>
<g>255</g>
<b>0</b>
</color>
<layerrelative> <!-- this means one layer bellow the previous layer -->
-1
</layerrelative>
</brush>
<pt>
<x>0.0</x>
<y>0.0</y>
</pt>
<pt>
<x>0.0</x>
<y>0.0</y>
</pt>
</stroke>
<stroke>
<pt>
<pres>0.5</pres> <!-- Optional. Preasure range from 0 to 1 -->
<rot>0.5</rot> <!-- Optional. Rotation range from 0 to 1 for 0 to 2*PI -->
<dir> <!-- Optional Direction -->
<x></x> <!-- range from 0 to 1 -->
<y></y> <!-- range from 0 to 1 -->
<z></z> <!-- Optional inside direction. Range from 0 to 1 -->
</dir>
</pt>
</stroke>
</drawing>
</tag>
</gml>
'''

126
generators/fromOSC.py Normal file
View File

@ -0,0 +1,126 @@
#!/usr/bin/python3
# -*- coding: utf-8 -*-
# -*- mode: Python -*-
'''
Forward /pl pointlist to cli
input OSC in END points format : (x,y,color)
output CLI in CLI points format : [x,y,color]
/pl "[(150.0, 230.0, 255), (170.0, 170.0, 255), (230.0, 170.0, 255), (210.0, 230.0, 255), (150.0, 230.0, 255)]"
v0.1.0
LICENCE : CC
by Cocoa, Sam Neurohack
'''
from __future__ import print_function
from OSC3 import OSCServer, OSCClient, OSCMessage
import sys
from time import sleep
import argparse
import ast
argsparser = argparse.ArgumentParser(description="fromOSC generator")
argsparser.add_argument("-i","--ip",help="IP to bind to (0.0.0.0 by default)",default="0.0.0.0",type=str)
argsparser.add_argument("-p","--port",help="OSC port to bind to (9002 by default)",default=9002,type=str)
argsparser.add_argument("-v","--verbose",action="store_true",help="Verbose output")
args = argsparser.parse_args()
verbose = args.verbose
ip = args.ip
port = int(args.port)
def debug(*args, **kwargs):
if( verbose == False ):
return
print(*args, file=sys.stderr, **kwargs)
oscserver = OSCServer( (ip, port) )
oscserver.timeout = 0
run = True
# this method of reporting timeouts only works by convention
# that before calling handle_request() field .timed_out is
# set to False
def handle_timeout(self):
self.timed_out = True
# funny python's way to add a method to an instance of a class
import types
oscserver.handle_timeout = types.MethodType(handle_timeout, oscserver)
# RAW OSC Frame available ?
def OSC_frame():
# clear timed_out flag
oscserver.timed_out = False
# handle all pending requests then return
while not oscserver.timed_out:
oscserver.handle_request()
# default handler
def OSChandler(oscpath, tags, args, source):
oscaddress = ''.join(oscpath.split("/"))
debug("fromOSC Default OSC Handler got oscpath", oscpath, "from" + str(source[0]), ":", args)
#print("OSC address", path)
#print("find.. /bhoreal ?", path.find('/bhoreal'))
if oscpath == "/pl" and len(args)==1:
debug("correct OSC type :'/pl")
if validate(args[0]) == True:
debug("new pl : ", args[0])
line = args[0].replace("(",'[')
line = line.replace(")",']')
line = "[{}]".format(line)
print(line, flush=True);
else:
debug("Bad pointlist -> msg trapped.")
else:
debug("BAD OSC Message : " + oscpath +" " +args[0])
oscserver.addMsgHandler( "default", OSChandler )
def validate(pointlist):
state = True
if len(pointlist)<9:
debug("Not enough characters :", pointlist)
state = False
if pointlist.find("(") == -1:
debug("Bad format : use () not [] for points", pointlist)
state = False
try:
pl = bytes(pointlist, 'ascii')
check = ast.literal_eval(pl.decode('ascii'))
except:
debug("BAD POINTLIST :", pointlist)
state = False
return state
# simulate a "game engine"
while run:
# do the game stuff:
sleep(0.01)
# call user script
OSC_frame()
oscserver.close()

72
generators/fromRedis.py Executable file
View File

@ -0,0 +1,72 @@
#!/usr/bin/python3
# -*- coding: utf-8 -*-
# -*- mode: Python -*-
'''
This generator reads a frame from redis
v0.1.0
Use it to create feedback loops by writing to the same frame
or to copy the frame from someone else
LICENCE : CC
by cocoa
'''
from __future__ import print_function
import ast
import argparse
import json
import redis
import sys
import time
name="generator::fromRedis"
def debug(*args, **kwargs):
if( verbose == False ):
return
print(*args, file=sys.stderr, **kwargs)
argsparser = argparse.ArgumentParser(description="Dummy generator")
argsparser.add_argument("-k","--key",required=True,help="Redis key to look after",default=30,type=str)
argsparser.add_argument("-i","--ip",help="IP address of the Redis server ",default="127.0.0.1",type=str)
argsparser.add_argument("-p","--port",help="Port of the Redis server ",default="6379",type=str)
argsparser.add_argument("-f","--fps",help="Frame Per Second",default=30,type=int)
argsparser.add_argument("-v","--verbose",action="store_true",help="Verbose output")
args = argsparser.parse_args()
fps = args.fps
verbose = args.verbose
key = args.key
ip = args.ip
port = args.port
optimal_looptime = 1 / fps
debug(name+" optimal looptime "+str(optimal_looptime))
r = redis.Redis(
host=ip,
port=port)
while True:
start = time.time()
# Read from Redis
line = r.get(key)
# Decode as list of tuples
pointsList = ast.literal_eval(line.decode('ascii'))
# convert to list of lists
pointsList = [list(elem) for elem in pointsList]
# Convert to JSON string
line = json.dumps( pointsList )
debug(name,"Key:{} line:{}".format(key,line))
print(line, flush=True);
looptime = time.time() - start
if( looptime < optimal_looptime ):
time.sleep( optimal_looptime - looptime)
debug(name+" micro sleep:"+str( optimal_looptime - looptime))

84
generators/fromUDP.py Normal file
View File

@ -0,0 +1,84 @@
#!/usr/bin/python3
# -*- coding: utf-8 -*-
# -*- mode: Python -*-
'''
fromUDP
Udp server to cli
v0.1b
'''
from __future__ import print_function
import traceback, time
import argparse
import socket
import _thread
import sys
name="generator::fromUDP"
def debug(*args, **kwargs):
if( verbose == False ):
return
print(*args, file=sys.stderr, **kwargs)
argsparser = argparse.ArgumentParser(description="fromUDP v0.1b help mode")
argsparser.add_argument("-v","--verbose",action="store_true",help="Verbose output")
argsparser.add_argument("-i","--ip",help="IP to bind to (0.0.0.0 by default)",default="0.0.0.0",type=str)
argsparser.add_argument("-p","--port",help="UDP port to bind to (9000 by default)",default=9000,type=str)
args = argsparser.parse_args()
verbose = args.verbose
ip = args.ip
port = int(args.port)
verbose = args.verbose
def udp_thread():
while True:
payload, client_address = sock.recvfrom(1024)
udpath = payload.decode('utf_8')
debug(udpath[0:])
print(udpath[0:], flush=True);
'''
# Reply to client
bytesToSend = str.encode("ACK :"+str(payload))
serverAddressPort = (client_address, port)
bufferSize = 1024
#sock.sendto(bytesToSend, serverAddressPort)
sock.sendto(bytesToSend, client_address)
'''
def StartUDP(serverIP, UDPORT):
global sock
sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
server = ( serverIP,UDPORT)
sock.bind(server)
_thread.start_new_thread(udp_thread, ())
StartUDP(ip, port)
# Do something else
try:
while True:
time.sleep(0.005)
except Exception:
traceback.print_exc()

319
generators/fromilda.py Normal file
View File

@ -0,0 +1,319 @@
#!/usr/bin/python3
# -*- coding: utf-8 -*-
# -*- mode: Python -*-
'''
fromild
v0.1.0
Read/display once an .ild animation file and quit ??
LICENCE : CC
by cocoa and Sam Neurohack
Heavy u-se of :
ILDA.py
Python module for dealing with the ILDA Image Data Transfer Format,
an interchange format for laser image frames.
Copyright (c) 2008 Micah Dowty
Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation
files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
'''
from __future__ import print_function
import time
import struct
import argparse
import sys
name="generator::fromild"
def debug(*args, **kwargs):
if( verbose == False ):
return
print(*args, file=sys.stderr, **kwargs)
argsparser = argparse.ArgumentParser(description=".ild file frame generator")
argsparser.add_argument("-f","--fps",help="Frame Per Second",default=30,type=int)
argsparser.add_argument("-v","--verbose",action="store_true",help="Verbose output")
argsparser.add_argument("-i","--ild",help=".ild file",default="book2.ild",type=str)
args = argsparser.parse_args()
fps=args.fps
verbose=args.verbose
optimal_looptime = 1 / fps
debug(name+" optimal looptime "+str(optimal_looptime))
# Format codes
FORMAT_3D = 0
FORMAT_2D = 1
FORMAT_COLOR_TABLE = 2
# Mapping from FORMAT_* codes to struct format strings
formatTable = (
'>hhhH',
'>hhH',
'>BBB',
)
# Header values
HEADER_MAGIC = b"ILDA\0\0\0"
HEADER_RESERVED = 0
HEADER_FORMAT = ">7sB16sHHHBB"
HEADER_LEN = struct.calcsize(HEADER_FORMAT)
# 64 default colors table : use rgb2int(colors64[ildacolor])
colors64 = [[255, 0, 0], [255, 17, 0], [255, 34, 0], [255, 51, 0], [255, 68, 0], [255, 85, 0], [255, 102, 0], [255, 119, 0], [255, 136, 0], [255, 153, 0], [255, 170, 0], [255, 187, 0], [255, 204, 0], [255, 221, 0], [255, 238, 0], [255, 255, 0], [255, 255, 0], [238, 255, 0], [204, 255, 0], [170, 255, 0], [136, 255, 0], [102, 255, 0], [68, 255, 0], [34, 255, 0], [0, 255, 0], [0, 255, 34], [0, 255, 68], [0, 255, 102], [0, 255, 136], [0, 255, 170], [0, 255, 204], [0, 255, 238], [0, 136, 255], [0, 119, 255], [0, 102, 255], [0, 102, 255], [0, 85, 255], [0, 68, 255], [0, 68, 255], [0, 34, 255], [0, 0, 255], [34, 0, 255], [68, 0, 255], [102, 0, 255], [136, 0, 255], [170, 0, 255], [204, 0, 255], [238, 0, 255], [255, 0, 255], [255, 34, 255], [255, 68, 255], [255, 102, 255], [255, 136, 255], [255, 170, 255], [255, 204, 255], [255, 238, 255], [255, 255, 255], [255, 238, 238], [255, 204, 204], [255, 170, 170], [255, 136, 136], [255, 102, 102], [255, 68, 68], [0, 34, 34]]
# 256 default colors table
colors256 = [[0, 0, 0], [255, 255, 255], [255, 0, 0], [255, 255, 0], [0, 255, 0], [0, 255, 255], [0, 0, 255], [255, 0, 255], [255, 128, 128], [255, 140, 128], [255, 151, 128], [255, 163, 128], [255, 174, 128], [255, 186, 128], [255, 197, 128], [255, 209, 128], [255, 220, 128], [255, 232, 128], [255, 243, 128], [255, 255, 128], [243, 255, 128], [232, 255, 128], [220, 255, 128], [209, 255, 128], [197, 255, 128], [186, 255, 128], [174, 255, 128], [163, 255, 128], [151, 255, 128], [140, 255, 128], [128, 255, 128], [128, 255, 140], [128, 255, 151], [128, 255, 163], [128, 255, 174], [128, 255, 186], [128, 255, 197], [128, 255, 209], [128, 255, 220], [128, 255, 232], [128, 255, 243], [128, 255, 255], [128, 243, 255], [128, 232, 255], [128, 220, 255], [128, 209, 255], [128, 197, 255], [128, 186, 255], [128, 174, 255], [128, 163, 255], [128, 151, 255], [128, 140, 255], [128, 128, 255], [140, 128, 255], [151, 128, 255], [163, 128, 255], [174, 128, 255], [186, 128, 255], [197, 128, 255], [209, 128, 255], [220, 128, 255], [232, 128, 255], [243, 128, 255], [255, 128, 255], [255, 128, 243], [255, 128, 232], [255, 128, 220], [255, 128, 209], [255, 128, 197], [255, 128, 186], [255, 128, 174], [255, 128, 163], [255, 128, 151], [255, 128, 140], [255, 0, 0], [255, 23, 0], [255, 46, 0], [255, 70, 0], [255, 93, 0], [255, 116, 0], [255, 139, 0], [255, 162, 0], [255, 185, 0], [255, 209, 0], [255, 232, 0], [255, 255, 0], [232, 255, 0], [209, 255, 0], [185, 255, 0], [162, 255, 0], [139, 255, 0], [116, 255, 0], [93, 255, 0], [70, 255, 0], [46, 255, 0], [23, 255, 0], [0, 255, 0], [0, 255, 23], [0, 255, 46], [0, 255, 70], [0, 255, 93], [0, 255, 116], [0, 255, 139], [0, 255, 162], [0, 255, 185], [0, 255, 209], [0, 255, 232], [0, 255, 255], [0, 232, 255], [0, 209, 255], [0, 185, 255], [0, 162, 255], [0, 139, 255], [0, 116, 255], [0, 93, 255], [0, 70, 255], [0, 46, 255], [0, 23, 255], [0, 0, 255], [23, 0, 255], [46, 0, 255], [70, 0, 255], [93, 0, 255], [116, 0, 255], [139, 0, 255], [162, 0, 255], [185, 0, 255], [209, 0, 255], [232, 0, 255], [255, 0, 255], [255, 0, 232], [255, 0, 209], [255, 0, 185], [255, 0, 162], [255, 0, 139], [255, 0, 116], [255, 0, 93], [255, 0, 70], [255, 0, 46], [255, 0, 23], [128, 0, 0], [128, 12, 0], [128, 23, 0], [128, 35, 0], [128, 47, 0], [128, 58, 0], [128, 70, 0], [128, 81, 0], [128, 93, 0], [128, 105, 0], [128, 116, 0], [128, 128, 0], [116, 128, 0], [105, 128, 0], [93, 128, 0], [81, 128, 0], [70, 128, 0], [58, 128, 0], [47, 128, 0], [35, 128, 0], [23, 128, 0], [12, 128, 0], [0, 128, 0], [0, 128, 12], [0, 128, 23], [0, 128, 35], [0, 128, 47], [0, 128, 58], [0, 128, 70], [0, 128, 81], [0, 128, 93], [0, 128, 105], [0, 128, 116], [0, 128, 128], [0, 116, 128], [0, 105, 128], [0, 93, 128], [0, 81, 128], [0, 70, 128], [0, 58, 128], [0, 47, 128], [0, 35, 128], [0, 23, 128], [0, 12, 128], [0, 0, 128], [12, 0, 128], [23, 0, 128], [35, 0, 128], [47, 0, 128], [58, 0, 128], [70, 0, 128], [81, 0, 128], [93, 0, 128], [105, 0, 128], [116, 0, 128], [128, 0, 128], [128, 0, 116], [128, 0, 105], [128, 0, 93], [128, 0, 81], [128, 0, 70], [128, 0, 58], [128, 0, 47], [128, 0, 35], [128, 0, 23], [128, 0, 12], [255, 192, 192], [255, 64, 64], [192, 0, 0], [64, 0, 0], [255, 255, 192], [255, 255, 64], [192, 192, 0], [64, 64, 0], [192, 255, 192], [64, 255, 64], [0, 192, 0], [0, 64, 0], [192, 255, 255], [64, 255, 255], [0, 192, 192], [0, 64, 64], [192, 192, 255], [64, 64, 255], [0, 0, 192], [0, 0, 64], [255, 192, 255], [255, 64, 255], [192, 0, 192], [64, 0, 64], [255, 96, 96], [255, 255, 255], [245, 245, 245], [235, 235, 235], [224, 224, 224], [213, 213, 213], [203, 203, 203], [192, 192, 192], [181, 181, 181], [171, 171, 171], [160, 160, 160], [149, 149, 149], [139, 139, 139], [128, 128, 128], [117, 117, 117], [107, 107, 107], [96, 96, 96], [85, 85, 85], [75, 75, 75], [64, 64, 64], [53, 53, 53], [43, 43, 43], [32, 32, 32], [21, 21, 21], [11, 11, 11], [0, 0, 0]]
def rgb2int(rgb):
return int('0x%02x%02x%02x' % tuple(rgb),0)
class Table(object):
"""Container object for one ILDA table: either a frame (table of points)
or a palette (table of colors).
The 'items' list contains the data within this table. Each item
is a tuple, corresponding to the raw values within that row of the
table.
2D frame: (x, y, status)
3D frame: (x, y, z, status)
Color: (r, g, b)
"""
def __init__(self, format=FORMAT_2D, name="",
length=0, number=0, total=0, scanHead=0):
self.__dict__.update(locals())
self.items = []
self.itemsproducer = None
def __repr__(self):
return ("<ILDA.Table format=%d name=%r "
"length=%d number=%d total=%d scanHead=%d>" %
(self.format, self.name, self.length, self.number,
self.total, self.scanHead))
def unpackHeader(self, data):
magic, self.format, self.name, self.length, \
self.number, self.total, self.scanHead, \
reserved = struct.unpack(HEADER_FORMAT, data)
print(magic, HEADER_MAGIC)
if magic != HEADER_MAGIC:
raise ValueError("Bad ILDA header magic. Not an ILDA file?")
if reserved != HEADER_RESERVED:
raise ValueError("Reserved ILDA field is not zero.")
def packHeader(self):
return struct.pack(HEADER_FORMAT, HEADER_MAGIC, self.format,
self.name, self.length, self.number,
self.total, self.scanHead, HEADER_RESERVED)
def readHeader(self, stream):
self.unpackHeader(stream.read(HEADER_LEN))
def writeHeader(self, stream):
stream.write(self.packHeader())
def _getItemFormat(self):
try:
return formatTable[self.format]
except IndexError:
raise ValueError("Unsupported format code")
def read_stream(self, stream):
"""Read the header, then read all items in this table."""
self.readHeader(stream)
if self.length:
fmt = self._getItemFormat()
itemSize = struct.calcsize(fmt)
self.items = [struct.unpack(fmt, stream.read(itemSize))
for i in range(self.length)]
self.itemsproducer = self.produce()
def write(self, stream):
"""Write the header, then write all items in this table."""
self.writeHeader(stream)
if self.length:
fmt = self._getItemFormat()
itemSize = struct.calcsize(fmt)
stream.write(''.join([struct.pack(fmt, *item)
for item in self.items]))
def iterPoints(self):
"""Iterate over Point instances for each item in this table.
Only makes sense if this is a 2D or 3D point table.
"""
for item in self.items:
p = Point()
p.decode(item)
yield p
def produce(self):
"""Iterate over Point instances for each item in this table.
Only makes sense if this is a 2D or 3D point table.
"""
while True:
for item in self.items:
p = Point()
p.decode(item)
yield p.encode()
#yield (p.x, p.y, p.z, p.color, p.blanking)
def read(self, cap):
"""yields what dac.play_stream() needs (x, y, z, ?, ?)
"""
return [next(self.itemsproducer) for i in range(cap)]
class Point:
"""Abstraction for one vector point. The Table object, for
completeness and efficiency, stores raw tuples for each
point. This is a higher level interface that decodes the status
bits and represents coordinates in floating point.
"""
def __init__(self, x=0.0, y=0.0, z=0.0, color=0, blanking=False):
self.__dict__.update(locals())
def __repr__(self):
return "%s, %s, %s, %s, %s" % (
self.x, self.y, self.z, self.color, self.blanking)
#return "<ILDA.Point (%s, %s, %s) color=%s blanking=%s>" % (
# self.x, self.y, self.z, self.color, self.blanking)
def encode(self):
status = self.color & 0xFF
if self.blanking:
status |= 1 << 14
return (
int( min(0x7FFF, max(-0x7FFF, self.x * 0x7FFF)) ),
int( min(0x7FFF, max(-0x7FFF, self.y * 0x7FFF)) ),
int( min(0x7FFF, max(-0x7FFF, self.z * 0x7FFF)) ),
int( min(0x7FFF, max(-0x7FFF, self.color * 0x7FFF)) ),
int( min(0x7FFF, max(-0x7FFF, self.blanking * 0x7FFF)) )
)
def decode(self, t):
#print "~~ Decoding, t of len "+ str(len(t)) +" is: " + str(t)
self.x = t[0] / 0x7FFF
self.y = t[1] / 0x7FFF
if len(t) > 3:
self.z = t[2] / 0x7FFF
# self.color = t[3] & 0xFF
# self.blanking = (t[3] & (1 << 14)) != 0
else:
self.z = 0.0
self.color = t[-1] & 0xFF
self.blanking = (t[-1] & (1 << 14)) != 0
def read(stream):
"""Read ILDA data from a stream until we hit the
end-of-stream marker. Yields a sequence of Table objects.
"""
while True:
t = Table()
t.read_stream(stream)
if not t.length:
# End-of-stream
break
yield t
def write(stream, tables):
"""Write a sequence of tables in ILDA format,
terminated by an end-of-stream marker.
"""
for t in tables:
t.write(stream)
Table().write(stream)
def readFrames(stream):
"""Read ILDA data from a stream, and ignore
all non-frame tables. Yields only 2D or 3D
point tables.
"""
for t in read(stream):
if t.format in (FORMAT_2D, FORMAT_3D):
yield t
def readFirstFrame(stream):
"""Read only a single frame from an ILDA stream."""
for frame in readFrames(stream):
return frame
#
f = open(args.ild, 'rb')
myframe = readFirstFrame(f)
while myframe.number +1< myframe.total:
start = time.time()
shape =[]
if myframe is None:
f.close()
break
debug(name,"Frame", myframe.number, "/",myframe.total, "length", myframe.length)
for p in myframe.iterPoints():
p2 = str(p)
point = p2.split(',')
x = float(point[0])
y = float(point[1])
z = float(point[2])
color = int(point[3])
blanking = point[4][1:]
if blanking == "True":
shape.append([300+(x*300),300+(-y*300),0])
else:
shape.append([300+(x*300),300+(-y*300),rgb2int(colors64[color])])
print(shape, flush=True);
myframe = readFirstFrame(f)
looptime = time.time() - start
if( looptime < optimal_looptime ):
time.sleep( optimal_looptime - looptime)
debug(name+" micro sleep:"+str( optimal_looptime - looptime))
f.close()
debug(name + " end of .ild animation")

131
generators/osc2redis.py Normal file
View File

@ -0,0 +1,131 @@
#!/usr/bin/python3
# -*- coding: utf-8 -*-
# -*- mode: Python -*-
'''
Forward pointlist to redis key
END POINT Format : (x,y,color)
/pl/0/0 "[(150.0, 230.0, 255), (170.0, 170.0, 255), (230.0, 170.0, 255), (210.0, 230.0, 255), (150.0, 230.0, 255)]"
v0.1.0
LICENCE : CC
by Cocoa, Sam Neurohack
'''
from OSC3 import OSCServer, OSCClient, OSCMessage
import sys
from time import sleep
import argparse
import ast
import redis
argsparser = argparse.ArgumentParser(description="osc2redis generator")
argsparser.add_argument("-i","--ip",help="IP to bind to (0.0.0.0 by default)",default="0.0.0.0",type=str)
argsparser.add_argument("-p","--port",help="OSC port to bind to (9002 by default)",default=9002,type=str)
argsparser.add_argument("-r","--rip",help="Redis server IP (127.0.0.1 by default)",default="127.0.0.1",type=str)
argsparser.add_argument("-o","--rout",help="Redis port (6379 by default)",default=6379,type=str)
argsparser.add_argument("-v","--verbose",action="store_true",help="Verbose output")
args = argsparser.parse_args()
verbose = args.verbose
ip = args.ip
port = int(args.port)
rip = args.rip
rport = int(args.rout)
r = redis.StrictRedis(host=rip, port=rport, db=0)
def debug(msg):
if( verbose == False ):
return
print(msg)
oscserver = OSCServer( (ip, port) )
oscserver.timeout = 0
run = True
# this method of reporting timeouts only works by convention
# that before calling handle_request() field .timed_out is
# set to False
def handle_timeout(self):
self.timed_out = True
# funny python's way to add a method to an instance of a class
import types
oscserver.handle_timeout = types.MethodType(handle_timeout, oscserver)
def validate(pointlist):
state = True
if len(pointlist)<9:
state = False
try:
pl = bytes(pointlist, 'ascii')
check = ast.literal_eval(pl.decode('ascii'))
except:
state = False
return state
# RAW OSC Frame available ?
def OSC_frame():
# clear timed_out flag
oscserver.timed_out = False
# handle all pending requests then return
while not oscserver.timed_out:
oscserver.handle_request()
# default handler
def OSChandler(oscpath, tags, args, source):
oscaddress = ''.join(oscpath.split("/"))
print("fromOSC Default OSC Handler got oscpath :", oscpath, "from :" + str(source[0]), "args :", args)
print(oscpath.find("/pl/"), len(oscpath))
if oscpath.find("/pl/") ==0 and len(args)==1:
print("correct OSC type :'/pl/")
if validate(args[0]) == True and len(oscpath) == 7:
print("new pl for key ", oscpath, ":", args[0])
if r.set(oscpath,args[0])==True:
debug("exports::redis set("+str(oscpath)+") to "+args[0])
else:
print("Bad pointlist -> msg trapped.")
else:
print("BAD OSC Message :", oscpath)
oscserver.addMsgHandler( "default", OSChandler )
# simulate a "game engine"
while run:
# do the game stuff:
sleep(0.01)
# call user script
OSC_frame()
oscserver.close()

174
generators/redilysis_lines.py Executable file
View File

@ -0,0 +1,174 @@
#!/usr/bin/python3
# -*- coding: utf-8 -*-
# -*- mode: Python -*-
'''
redilysis_lines
v0.1.0
Add a line on every frame and scroll
see https://git.interhacker.space/teamlaser/redilysis for more informations
about the redilysis project
LICENCE : CC
by cocoa
'''
from __future__ import print_function
import argparse
import ast
import os
import math
import random
import redis
import sys
import time
name = "generator::redilysis_lines"
def debug(*args, **kwargs):
if( verbose == False ):
return
print(*args, file=sys.stderr, **kwargs)
def msNow():
return time.time()
CHAOS = 1
REDIS_FREQ = 33
# General Args
argsparser = argparse.ArgumentParser(description="Redilysis filter")
argsparser.add_argument("-v","--verbose",action="store_true",help="Verbose")
# Redis Args
argsparser.add_argument("-i","--ip",help="IP address of the Redis server ",default="127.0.0.1",type=str)
argsparser.add_argument("-p","--port",help="Port of the Redis server ",default="6379",type=str)
argsparser.add_argument("-F","--redis-freq",help="Query Redis every x (in milliseconds). Default:{}".format(REDIS_FREQ),default=REDIS_FREQ,type=int)
# General args
argsparser.add_argument("-n","--nlines",help="number of lines on screen",default=60,type=int)
argsparser.add_argument("-x","--centerX",help="geometrical center X position",default=400,type=int)
argsparser.add_argument("-y","--centerY",help="geometrical center Y position",default=400,type=int)
argsparser.add_argument("-W","--max-width",help="geometrical max width",default=800,type=int)
argsparser.add_argument("-H","--max-height",help="geometrical max height",default=800,type=int)
argsparser.add_argument("-f","--fps",help="Frame Per Second",default=30,type=int)
args = argsparser.parse_args()
verbose = args.verbose
ip = args.ip
port = args.port
fps = args.fps
centerX = args.centerX
centerY = args.centerY
redisFreq = args.redis_freq / 1000
maxWidth = args.max_width
maxHeight = args.max_height
nlines = args.nlines
optimal_looptime = 1 / fps
redisKeys = ["spectrum_120","spectrum_10"]
debug(name,"Redis Keys:{}".format(redisKeys))
redisData = {}
redisLastHit = msNow() - 99999
r = redis.Redis(
host=ip,
port=port)
white = 16777215
lineList = []
scroll_speed = int(maxHeight / nlines )
line_length = int(maxWidth / 10)
line_pattern = []
def rgb2int(rgb):
#debug(name,"::rgb2int rbg:{}".format(rgb))
return int('0x%02x%02x%02x' % tuple(rgb),0)
def spectrum_10( ):
delList = []
spectrum = ast.literal_eval(redisData["spectrum_10"])
debug( name, "spectrum:{}".format(spectrum))
# scroll lines
for i,line in enumerate(lineList):
skip_line = False
new_y = int(line[0][1] + scroll_speed)
if( new_y >= maxHeight ):
debug(name,"{} > {}".format(new_y,maxHeight))
debug(name,"delete:{}".format(i))
delList.append(i)
continue
for j,point in enumerate(line):
line[j][1] = new_y
lineList[i] = line
for i in delList:
del lineList[i]
# new line
currentLine = []
for i in range(0,10):
x = int(i * line_length)
y = 0
# get frequency level
level = spectrum[i]
# get color
comp = int(255*level)
color = rgb2int( (comp,comp,comp))
# new point
currentLine.append( [x,y,color] )
# add line to list
lineList.append( currentLine)
def refreshRedis():
global redisLastHit
global redisData
# Skip if cache is sufficent
diff = msNow() - redisLastHit
if diff < redisFreq :
#debug(name, "refreshRedis not updating redis, {} < {}".format(diff, redisFreq))
pass
else:
#debug(name, "refreshRedis updating redis, {} > {}".format(diff, redisFreq))
redisLastHit = msNow()
for key in redisKeys:
redisData[key] = r.get(key).decode('ascii')
#debug(name,"refreshRedis key:{} value:{}".format(key,redisData[key]))
# Only update the TTLs
if 'bpm' in redisKeys:
redisData['bpm_pttl'] = r.pttl('bpm')
#debug(name,"refreshRedis key:bpm_ttl value:{}".format(redisData["bpm_pttl"]))
#debug(name,"redisData:{}".format(redisData))
return True
def linelistToPoints( lineList ):
pl = []
for i,line in enumerate(lineList):
# add a blank point
pl.append([ line[0][0], line[0][1], 0 ])
# append all the points of the line
pl += line
#debug(name,"pl:{}".format(pl))
debug(name,"pl length:{}".format(len(pl)))
return pl
try:
while True:
refreshRedis()
start = time.time()
# Do the thing
pointsList = spectrum_10()
print( linelistToPoints(lineList), flush=True )
looptime = time.time() - start
# debug(name+" looptime:"+str(looptime))
if( looptime < optimal_looptime ):
time.sleep( optimal_looptime - looptime)
# debug(name+" micro sleep:"+str( optimal_looptime - looptime))
except EOFError:
debug(name+" break")# no more information

288
generators/redilysis_particles.py Executable file
View File

@ -0,0 +1,288 @@
#!/usr/bin/python3
# -*- coding: utf-8 -*-
# -*- mode: Python -*-
'''
v0.1.0
LICENCE : CC
by cocoa
'''
from __future__ import print_function
import math
import random
import sys
import os
import time
import redis
import ast
import argparse
MAX_PARTICLES = 50
MAX_TIME = 500
argsparser = argparse.ArgumentParser(description="Dummy generator")
argsparser.add_argument("-f","--fps",help="Frame Per Second",default=30,type=int)
argsparser.add_argument("-v","--verbose",action="store_true",help="Verbose output")
# Redis Args
argsparser.add_argument("-i","--ip",help="IP address of the Redis server ",default="127.0.0.1",type=str)
argsparser.add_argument("-p","--port",help="Port of the Redis server ",default="6379",type=str)
#
argsparser.add_argument("-M","--max-particles",help="Max Particles. Default:{}".format(MAX_PARTICLES),default=MAX_PARTICLES,type=int)
argsparser.add_argument("-m","--max-time",help="Max Particles. Default:{}".format(MAX_TIME),default=MAX_TIME,type=int)
args = argsparser.parse_args()
verbose = args.verbose
ip = args.ip
port = args.port
max_particles = args.max_particles
max_time = args.max_time
def debug(*args, **kwargs):
if( verbose == False ):
return
print(*args, file=sys.stderr, **kwargs)
def rgb2int(rgb):
#debug(name,"::rgb2int rbg:{}".format(rgb))
return int('0x%02x%02x%02x' % tuple(rgb),0)
def spectrum_120( ):
return ast.literal_eval(redisData["spectrum_10"])
def rgb2int(rgb):
#debug(name,"::rgb2int rbg:{}".format(rgb))
return int('0x%02x%02x%02x' % tuple(rgb),0)
def msNow():
return time.time()
def refreshRedis():
global redisData
for key in redisKeys:
redisData[key] = ast.literal_eval(r.get(key).decode('ascii'))
name="generator::redilisys_particles"
class UnpreparedParticle(Exception):
pass
class Particle(object):
def __init__(self, x, y, m):
self.x = x
self.y = y
self.m = m
self.dx = 0
self.dy = 0
self.connectedTo = []
self.decay = random.randint(10,max_time)
self.color = (random.randint(128,256) - int(12.8 * self.m),
random.randint(128,256) - int(12.8 * self.m),
random.randint(128,256) - int(12.8 * self.m))
self.color = (255,255,255)
#debug( self.color )
def interact(self, bodies):
self.connectedTo = []
spec = redisData["spectrum_10"]
power = int(sum(spec[4:6]))
for other in bodies:
if other is self:
continue
dx = other.x - self.x
dy = other.y - self.y
dist = math.sqrt(dx*dx + dy*dy)
if dist == 0:
dist = 1
if dist < 100 and random.randint(0,power) > 0.5 :
self.connectedTo.append(other)
self.decay += 2
factor = other.m / dist**2
high_power = sum(spec[8:9]) if sum(spec[8:9]) != 0 else 0.01
self.dx += (dx * factor * self.m)
self.dy += (dy * factor * self.m)
#print "factor %f" % (factor,)
def move(self):
spec = redisData["spectrum_10"]
x_friction = (2.2-(1+spec[7]/2))
y_friction = (2.2-(1+spec[7]/2))
#x_friction = 1.02
#y_friction = 1.04
self.dx /= x_friction if x_friction != 0 else 0.01
self.dy /= y_friction if y_friction != 0 else 0.01
self.x += self.dx
self.y += self.dy
if self.x > max_width:
self.dx = - self.dx /8
self.x = max_width
if self.x < 1:
self.dx = - self.dx /8
self.x = 1
if self.y > max_height:
self.dy = - self.dy /4
self.y = max_height
if self.y < 1:
self.dy = - self.dy /4
self.y = 1
#print "(%.2f,%.2f) -> (%.2f,%.2f)" % (ox, oy, self.x, self.y)
def attractor(self,attractor):
spec = redisData["spectrum_10"]
power = sum(spec[0:4])/3
# If we're going in the direction of center, reverse
next_x = self.x + self.dx
next_y = self.y + self.dy
next_dx = attractor["x"] - self.x
next_dy = attractor["y"] - self.y
next_dist = math.sqrt(next_dx*next_dx + next_dy*next_dy)
dx = attractor["x"] - self.x
dy = attractor["y"] - self.y
dist = math.sqrt(dx*dx + dy*dy)
if dist == 0:
dist = 1
factor = power/ dist**2
x_acceleration = (dx * factor * power * power)
y_acceleration = (dx * factor * power * power)
if next_dist > dist:
self.dx -= x_acceleration * power
self.dy -= y_acceleration * power
else:
self.dx += x_acceleration
self.dy += y_acceleration
class Attractor(Particle):
def move(self):
pass
class ParticleViewer(object):
def __init__(self, particles, size=(800,800)):
(self.width, self.height) = size
self.size = size
self.particles = particles
self.xoff = 0
self.yoff = 0
self.scalefactor = 1
def redraw(self):
pl = []
drawnVectors = []
for p in self.particles:
x = int(self.scalefactor * p.x) - self.xoff
y = int(self.scalefactor * p.y) - self.yoff
if x > max_width:
x = max_width
if x < 1:
x = 1
if y > max_height:
y = max_height
if y < 1:
y = 1
color = rgb2int(p.color)
pl.append([x+1,y+1,0])
pl.append([x+1,y+1,color])
pl.append([x,y,color])
for other in p.connectedTo:
if [other,self] in drawnVectors:
continue
drawnVectors.append([other,self])
pl.append([x,y,0])
pl.append([x,y,color])
pl.append([other.x,other.y,color])
print(pl,flush = True)
def decayParticles(self):
for i,p in enumerate(self.particles):
# Handle positional decay
if p.decay == 0:
del self.particles[i]
continue
p.decay = p.decay - 1
# Handle color decay
n = int(255 * (p.decay / max_time ))
p.color = (n,n,n)
def emitParticles(self):
spec = redisData["spectrum_10"]
power = sum(spec[6:])
if len(self.particles ) > math.sqrt(max_particles):
if len(self.particles) > max_particles:
return
if random.random() > power:
return
# x is either left or right
d = 600
rx = 100 if random.randint(0,1) else 700
#rx = random.randint(1,max_width)
ry = random.randint(1,max_height)
spec = redisData["spectrum_10"]
m = random.randint(1,1+int(10*spec[7]))
particles.append(Particle(rx, ry, m))
def tick(self):
self.decayParticles()
self.emitParticles()
for p in self.particles:
p.interact(self.particles)
p.attractor({
"x":max_width/2,
"y":max_height/2
})
for p in particles:
p.move()
self.redraw()
def scale(self, factor):
self.scalefactor += factor
max_width = 800
max_height = 800
redisKeys = ["spectrum_120","spectrum_10"]
redisData = {}
redisLastHit = msNow() - 99999
r = redis.Redis(
host=ip,
port=port)
white = 16777215
refreshRedis()
if __name__ == "__main__":
particles = []
# particles.append(Attractor(320, 200, 10))
# particles.append(Attractor(100, 100, 10))
win = ParticleViewer(particles)
try:
while True:
win.tick()
refreshRedis()
time.sleep(.03)
except KeyboardInterrupt:
pass

94
generators/text.py Normal file
View File

@ -0,0 +1,94 @@
#!/usr/bin/python3
# -*- coding: utf-8 -*-
# -*- mode: Python -*-
'''
Experimental Laserized Turtle graphics library
See turtle1.py for example
pip3 install Hershey-Fonts
v0.1.0
Font list :
'futural', 'astrology', 'cursive', 'cyrilc_1', 'cyrillic', 'futuram', 'gothgbt', 'gothgrt',
'gothiceng', 'gothicger', 'gothicita', 'gothitt', 'greek', 'greekc', 'greeks', 'japanese',
'markers', 'mathlow', 'mathupp', 'meteorology', 'music', 'rowmand', 'rowmans', 'rowmant',
'scriptc', 'scripts', 'symbolic', 'timesg', 'timesi', 'timesib', 'timesr', 'timesrb'
LICENCE : CC
by cocoa and Sam Neurohack
'''
from __future__ import print_function
import time
import argparse
import sys
from HersheyFonts import HersheyFonts
name="generator::text"
def debug(*args, **kwargs):
if( verbose == False ):
return
print(*args, file=sys.stderr, **kwargs)
argsparser = argparse.ArgumentParser(description="Text generator")
argsparser.add_argument("-f","--fps",help="Frame Per Second",default=30,type=int)
argsparser.add_argument("-v","--verbose",action="store_true",help="Verbose output")
argsparser.add_argument("-t","--text",help="Text to display",default="hello",type=str)
argsparser.add_argument("-p","--police",help="Herschey font to use",default="futural",type=str)
args = argsparser.parse_args()
fps=args.fps
verbose=args.verbose
text = args.text
fontname = args.police
optimal_looptime = 1 / fps
debug(name+" optimal looptime "+str(optimal_looptime))
def rgb2int(rgb):
return int('0x%02x%02x%02x' % tuple(rgb),0)
# Useful variables init.
white = rgb2int((255,255,255))
red = rgb2int((255,0,0))
blue = rgb2int((0,0,255))
green = rgb2int((0,255,0))
color = 65280
shape =[]
Allfonts = ['futural', 'astrology', 'cursive', 'cyrilc_1', 'cyrillic', 'futuram', 'gothgbt', 'gothgrt', 'gothiceng', 'gothicger', 'gothicita', 'gothitt', 'greek', 'greekc', 'greeks', 'japanese', 'markers', 'mathlow', 'mathupp', 'meteorology', 'music', 'rowmand', 'rowmans', 'rowmant', 'scriptc', 'scripts', 'symbolic', 'timesg', 'timesi', 'timesib', 'timesr', 'timesrb']
thefont = HersheyFonts()
#thefont.load_default_font()
thefont.load_default_font(fontname)
thefont.normalize_rendering(120)
for (x1, y1), (x2, y2) in thefont.lines_for_text(text):
shape.append([x1, -y1+400, color])
shape.append([x2 ,-y2+400, color])
while True:
start = time.time()
print(shape, flush=True);
looptime = time.time() - start
if( looptime < optimal_looptime ):
time.sleep( optimal_looptime - looptime)
debug(name+" micro sleep:"+str( optimal_looptime - looptime))
#[[14.285714285714286, 100.0, 14.285714285714286, 25.0, 65280], [64.28571428571429, 100.0, 64.28571428571429, 25.0, 65280], [14.285714285714286, 64.28571428571429, 64.28571428571429, 64.28571428571429, 65280], [89.28571428571428, 53.57142857142858, 132.14285714285714, 53.57142857142858, 65280], [132.14285714285714, 53.57142857142858, 132.14285714285714, 60.714285714285715, 65280], [132.14285714285714, 60.714285714285715, 128.57142857142856, 67.85714285714286, 65280], [128.57142857142856, 67.85714285714286, 125.0, 71.42857142857143, 65280], [125.0, 71.42857142857143, 117.85714285714286, 75.0, 65280], [117.85714285714286, 75.0, 107.14285714285714, 75.0, 65280], [107.14285714285714, 75.0, 100.0, 71.42857142857143, 65280], [100.0, 71.42857142857143, 92.85714285714286, 64.28571428571429, 65280], [92.85714285714286, 64.28571428571429, 89.28571428571428, 53.57142857142858, 65280], [89.28571428571428, 53.57142857142858, 89.28571428571428, 46.42857142857143, 65280], [89.28571428571428, 46.42857142857143, 92.85714285714286, 35.714285714285715, 65280], [92.85714285714286, 35.714285714285715, 100.0, 28.571428571428573, 65280], [100.0, 28.571428571428573, 107.14285714285714, 25.0, 65280], [107.14285714285714, 25.0, 117.85714285714286, 25.0, 65280], [117.85714285714286, 25.0, 125.0, 28.571428571428573, 65280], [125.0, 28.571428571428573, 132.14285714285714, 35.714285714285715, 65280]]

175
generators/trckr.py Normal file
View File

@ -0,0 +1,175 @@
#!/usr/bin/python3
# -*- coding: utf-8 -*-
# -*- mode: Python -*-
'''
A Face tracker
v0.1.0
Get all points fom redis /trckr/frame/WSclientID points
LICENCE : CC
by cocoa and Sam Neurohack
'''
from __future__ import print_function
import time
import argparse
import sys
import redis
import ast
name="generator::trckr"
def debug(*args, **kwargs):
if( verbose == False ):
return
print(*args, file=sys.stderr, **kwargs)
argsparser = argparse.ArgumentParser(description="Face tracking generator")
argsparser.add_argument("-f","--fps",help="Frame Per Second",default=30,type=int)
argsparser.add_argument("-v","--verbose",action="store_true",help="Verbose output")
argsparser.add_argument("-i","--id",help="Trckr client ID",default="0",type=str)
argsparser.add_argument("-s","--server",help="redis server IP (127.0.0.1 by default)", type=str)
args = argsparser.parse_args()
fps=args.fps
verbose=args.verbose
idclient = args.id
if args.server:
redisIP = args.server
else:
redisIP = "127.0.0.1"
optimal_looptime = 1 / fps
debug(name+" optimal looptime "+str(optimal_looptime))
color = 65280
def rgb2int(rgb):
return int('0x%02x%02x%02x' % tuple(rgb),0)
# Useful variables init.
white = rgb2int((255,255,255))
red = rgb2int((255,0,0))
blue = rgb2int((0,0,255))
green = rgb2int((0,255,0))
#
# Redis functions
#
r = redis.StrictRedis(host=redisIP , port=6379, db=0)
# read from redis key
def fromKey(keyname):
return r.get(keyname)
# Write to redis key
def toKey(keyname,keyvalue):
return r.set(keyname,keyvalue)
#
# Trckr faces
#
TrckrPts = [[159.39, 137.68], [155.12, 159.31], [155.56, 180.13], [159.81, 201.6], [170.48, 220.51], [187.46, 234.81], [208.4, 244.68], [229.46, 248.21], [246.44, 244.91], [259.69, 234.83], [270.95, 221.51], [278.54, 204.66], [283.53, 185.63], [286.27, 165.79], [284.72, 144.84], [280.06, 125.01], [274.35, 118.7], [260.71, 117.23], [249.52, 118.86], [182.04, 121.5], [193.63, 114.79], [210.24, 114.77], [222.35, 117.57], [190.6, 137.49], [203.59, 132.42], [214.75, 137.58], [203.04, 140.46], [203.32, 136.53], [272.45, 141.57], [263.33, 135.42], [250.31, 138.89], [262.15, 143.27], [261.99, 139.37], [235.82, 131.74], [221.87, 156.09], [213.66, 165.88], [219.28, 173.53], [236.3, 175.25], [249.02, 174.4], [254.22, 167.81], [248.83, 157.39], [237.94, 147.51], [227.01, 168.39], [245.68, 170.02], [204.94, 197.32], [217.56, 192.77], [228.27, 190.55], [234.66, 192.19], [240.47, 191.09], [247.96, 193.87], [254.52, 199.19], [249.35, 204.25], [242.74, 207.16], [233.2, 207.87], [222.13, 206.52], [212.44, 203.09], [220.34, 198.74], [233.31, 200.04], [244.0, 199.6], [244.27, 197.8], [233.81, 197.44], [220.88, 196.99], [239.57, 162.69], [196.52, 133.86], [210.2, 133.98], [209.43, 139.41], [196.59, 139.47], [268.99, 137.59], [256.36, 136.02], [255.95, 141.5], [267.9, 142.85]]
toKey('/trckr/frame/0',str(TrckrPts))
# get absolute face position points
def getPART(TrckrPts, pose_points):
dots = []
#debug(pose_points)
#debug(TrckrPts)
for dot in pose_points:
dots.append((TrckrPts[dot][0], TrckrPts[dot][1],0))
#debug(dots)
return dots
# Face keypoints
def face(TrckrPts):
pose_points = [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14]
return getPART(TrckrPts, pose_points)
def browL(TrckrPts):
pose_points = [15,16,17,18]
return getPART(TrckrPts, pose_points)
def browR(TrckrPts):
pose_points = [22,21,20,19]
return getPART(TrckrPts, pose_points)
def eyeR(TrckrPts):
pose_points = [25,64,24,63,23,66,26,65,25]
return getPART(TrckrPts, pose_points)
def eyeL(TrckrPts):
pose_points = [28,67,29,68,30,69,31,28]
return getPART(TrckrPts, pose_points)
def pupR(TrckrPts):
pose_points = [27]
return getPART(TrckrPts, pose_points)
def pupL(TrckrPts):
pose_points = [32]
return getPART(TrckrPts, pose_points)
def nose1(TrckrPts):
pose_points = [62,41,33]
return getPART(TrckrPts, pose_points)
def nose2(TrckrPts):
pose_points = [40,39,38,43,37,42,36,35,34]
return getPART(TrckrPts, pose_points)
def mouth(TrckrPts):
pose_points = [50,49,48,47,46,45,44,55,54,53,52,51,50]
return getPART(TrckrPts, pose_points)
def mouthfull(TrckrPts):
pose_points = [50,49,48,47,46,45,44,55,54,53,52,51,50,59,60,61,44,56,57,58,50]
return getPART(TrckrPts, pose_points)
while True:
start = time.time()
shape =[]
points = ast.literal_eval(fromKey('/trckr/frame/'+idclient).decode('ascii'))
shape.append(browL(points))
shape.append(eyeL(points))
shape.append(browR(points))
shape.append(eyeR(points))
shape.append(pupL(points))
shape.append(pupR(points))
shape.append(nose1(points))
shape.append(nose2(points))
shape.append(mouthfull(points))
line = str(shape)
line = line.replace("(",'[')
line = line.replace(")",']')
line = "[{}]".format(line)
print(line, flush=True);
#debug(shape)
#print(shape, flush=True);
looptime = time.time() - start
if( looptime < optimal_looptime ):
time.sleep( optimal_looptime - looptime)
debug(name+" micro sleep:"+str( optimal_looptime - looptime))

194
generators/tunnel.py Executable file
View File

@ -0,0 +1,194 @@
#!/usr/bin/python3
# -*- coding: utf-8 -*-
# -*- mode: Python -*-
'''
Woooh! I'm progressing in a tunnel !
v0.1.0
Use it to test your filters and outputs
LICENCE : CC
by cocoa
'''
from __future__ import print_function
import argparse
import math
import random
import sys
import time
name="generator::tunnel"
def debug(*args, **kwargs):
if( verbose == False ):
return
print(*args, file=sys.stderr, **kwargs)
argsparser = argparse.ArgumentParser(description="tunnel generator")
argsparser.add_argument("-c","--color",help="Color",default=65280,type=int)
argsparser.add_argument("-f","--fps",help="Frame Per Second",default=30,type=int)
argsparser.add_argument("-i","--interval",help="point per shape interval",default=30,type=int)
argsparser.add_argument("-m","--max-size",help="maximum size for objects",default=400,type=int)
argsparser.add_argument("-r","--randomize",help="center randomization",default=5,type=int)
argsparser.add_argument("-s","--speed",help="point per frame progress",default=3,type=int)
argsparser.add_argument("-v","--verbose",action="store_true",help="Verbose output")
argsparser.add_argument("-x","--centerX",help="geometrical center X position",default=400,type=int)
argsparser.add_argument("-y","--centerY",help="geometrical center Y position",default=400,type=int)
args = argsparser.parse_args()
centerX = args.centerX
centerY = args.centerY
color = args.color
fps = args.fps
interval = args.interval
max_size = args.max_size
randomize = args.randomize
speed = args.speed
verbose = args.verbose
origSpeed = speed
optimal_looptime = 1 / fps
square = [
[-1,1],
[1,1],
[1,-1],
[-1,-1],
[-1,1]
]
circle = [[1,0],
[0.9238795325112867,0.3826834323650898],
[0.7071067811865476,0.7071067811865475],
[0.38268343236508984,0.9238795325112867],
[0,1.0],
[-0.3826834323650897,0.9238795325112867],
[-0.7071067811865475,0.7071067811865476],
[-0.9238795325112867,0.3826834323650899],
[-1.0,0],
[-0.9238795325112868,-0.38268343236508967],
[-0.7071067811865477,-0.7071067811865475],
[-0.38268343236509034,-0.9238795325112865],
[0,-1.0],
[0.38268343236509,-0.9238795325112866],
[0.707106781186548,-0.707106781186547],
[0.9238795325112872,-0.3826834323650887],
[1,0]]
shape = circle
currentCenter = [centerX, centerY]
centerVector= [0,0]
# tweak random basis
if randomize % 2 == 1:
randomize += 1
debug(name,"randomize:{}".format(randomize))
centerRand = int(math.sqrt(randomize) / 4 ) + 1
debug( name, "centerRand:{}".format(centerRand ) )
class polylineGenerator( object ):
def __init__( self ):
self.polylineList = [[0,[currentCenter[0],currentCenter[1]]]]
self.buf = []
def init(self):
finished = False
while not finished:
finished = self.increment()
debug(name,"init done:{}".format(self.polylineList))
def draw( self ):
self.buf = []
for it_pl, infoList in enumerate(self.polylineList):
size = infoList[0]
center = infoList[1]
for it_sqr, point in enumerate(shape):
x = int( center[0] + point[0]*size )
y = int( center[1] + point[1]*size )
# Add an invisible point in first location
if 0 == it_sqr:
self.buf.append([x,y,0])
self.buf.append([x,y,color])
#debug( name, "buf size:", str(len(self.buf)) )
return self.buf
def increment(self):
global speed
self.buffer = []
min_size = 9999
delList = []
if randomize :
# Change the vector
centerVector[0] += random.randrange( -centerRand,centerRand )
centerVector[1] += random.randrange( -centerRand,centerRand )
# Modify the vector if it is over the limit
if currentCenter[0] + centerVector[0] >= centerX + randomize or currentCenter[0] + centerVector[0] <= centerX - randomize:
centerVector[0] = 0
if currentCenter[1] + centerVector[1] >= centerY + randomize or currentCenter[1] +centerVector[1] <= centerY - randomize:
centerVector[1] = 0
currentCenter[0] += centerVector[0]
currentCenter[1] += centerVector[1]
# Change speed
speed += int( random.randrange( int(-origSpeed),origSpeed ) )
if speed < origSpeed :
speed = origSpeed
elif speed > (origSpeed + randomize / 2) :
speed = origSpeed + randomize / 2
#debug(name, "currentCenter:{} speed:{}".format(currentCenter,speed))
for i, shapeInfo in enumerate(self.polylineList):
size = shapeInfo[0]
# Augment speed with size
"""
size = 0 : += sqrt(speed)
size = half max size : +=speed
"""
if size < max_size / 4:
size += math.pow(speed, 0.1)
elif size < max_size / 3:
size += math.pow(speed, 0.25)
elif size < max_size / 2:
size += math.pow(speed, 0.5)
else:
size += math.pow(speed, 1.25)
if size < min_size : min_size = size
if size > max_size : delList.append(i)
self.polylineList[i][0] = size
for i in delList:
del self.polylineList[i]
#debug(name, "polyline:",self.polylineList)
if min_size >= interval:
debug(name, "new shape")
self.polylineList.append([0,[currentCenter[0],currentCenter[1]]])
# Return True if we delete a shape
if len(delList):
return True
return False
pgen = polylineGenerator()
pgen.init()
while True:
start = time.time()
# Generate
pgen.increment()
# send
pl = pgen.draw()
print(pl, flush=True)
#debug(name,"output:{}".format(pl))
looptime = time.time() - start
if( looptime < optimal_looptime ):
time.sleep( optimal_looptime - looptime)
#debug(name+" micro sleep:"+str( optimal_looptime - looptime))

657
generators/turtle.py Normal file
View File

@ -0,0 +1,657 @@
#!/usr/bin/python3
# -*- coding: utf-8 -*-
"""
Turtle library laser emulation
v0.1b
by Sam Neurohack
from /team/laser
"""
from __future__ import print_function
import time
import argparse
import sys
import math
from HersheyFonts import HersheyFonts
name="generator::turtle"
def debug(*args, **kwargs):
if( verbose == False ):
return
print(*args, file=sys.stderr, **kwargs)
argsparser = argparse.ArgumentParser(description="Turtle graphics generator")
argsparser.add_argument("-f","--fps",help="Frame Per Second",default=30,type=int)
argsparser.add_argument("-v","--verbose",action="store_true",help="Verbose output")
argsparser.add_argument("-x","--LasCenterX",help="geometrical center X position",default=350,type=int)
argsparser.add_argument("-y","--LasCenterY",help="geometrical center Y position",default=350,type=int)
argsparser.add_argument("-p","--police",help="Herschey font to use",default="futural",type=str)
argsparser.add_argument("-m","--mode",help="Mode to use : ",default="clitools",type=str)
args = argsparser.parse_args()
fps=args.fps
verbose=args.verbose
mode = args.mode
LasCenterX = args.LasCenterX
LasCenterY = args.LasCenterY
fontname = args.police
Allfonts = ['futural', 'astrology', 'cursive', 'cyrilc_1', 'cyrillic', 'futuram', 'gothgbt', 'gothgrt', 'gothiceng', 'gothicger', 'gothicita', 'gothitt', 'greek', 'greekc', 'greeks', 'japanese', 'markers', 'mathlow', 'mathupp', 'meteorology', 'music', 'rowmand', 'rowmans', 'rowmant', 'scriptc', 'scripts', 'symbolic', 'timesg', 'timesi', 'timesib', 'timesr', 'timesrb']
thefont = HersheyFonts()
#thefont.load_default_font()
thefont.load_default_font(fontname)
thefont.normalize_rendering(120)
CurrentColor = 255
CurrentAngle = 0.0
CurrentX = 0.0
CurrentY = 0.0
shape = []
optimal_looptime = 1 / fps
debug(name+" optimal looptime "+str(optimal_looptime))
#
# Color functions
#
# input hexcode = '0xff00ff'
def hex2rgb(hexcode):
hexcode = hexcode[2:]
return tuple(int(hexcode[i:i+2], 16) for i in (0, 2, 4))
#return tuple(map(ord,hexcode[1:].decode('hex')))
# input rgb=(255,0,255) output '0xff00ff'
def rgb2hex(rgb):
return '0x%02x%02x%02x' % tuple(rgb)
#def rgb2hex(r, g, b):
# return hex((r << 16) + (g << 8) + b)
def rgb2int(rgb):
return int('0x%02x%02x%02x' % tuple(rgb),0)
#def rgb2int(r,g,b):
# return int('0x%02x%02x%02x' % (r,g,b),0)
def int2rgb(intcode):
#hexcode = '0x{0:06X}'.format(intcode)
hexcode = '{0:06X}'.format(intcode)
return tuple(int(hexcode[i:i+2], 16) for i in (0, 2, 4))
#
# Turtle
#
def fd(distance):
forward(distance)
def forward(distance):
global CurrentX, CurrentY, shape
#Move the turtle forward by the specified distance, in the direction the turtle is headed.
rad = CurrentAngle * math.pi / 180
CurrentX = distance * math.cos(rad) + CurrentX
CurrentY = distance * math.sin(rad) + CurrentY
shape.append([CurrentX + LasCenterX , CurrentY + LasCenterY , CurrentColor])
def back(distance):
backward(distance)
def bk(distance):
backward(distance)
def backward(distance):
global CurrentX, CurrentY, shape
#Move the turtle backward by distance, opposite to the direction the turtle is headed. Do not change the turtles heading.
rad = (CurrentAngle+180) * math.pi / 180
CurrentX = distance * math.cos(rad) + CurrentX
CurrentY = distance * math.sin(rad) + CurrentY
shape.append([CurrentX + LasCenterX, CurrentY + LasCenterY, CurrentColor])
def right(angle):
rt(angle)
def rt(angle):
global CurrentAngle
#Turn turtle right by angle units. (Units are by default degrees, but can be set via the degrees() and radians() functions.) Angle orientation depends on the turtle mode, see mode().
CurrentAngle = CurrentAngle + angle
def left(angle):
lt(angle)
def lt(angle):
global CurrentAngle
#Turn turtle left by angle units. (Units are by default degrees, but can be set via the degrees() and radians() functions.) Angle orientation depends on the turtle mode, see mode().
CurrentAngle = CurrentAngle - angle
def goto(x, y=None):
setposition(x, y=None)
def setpos(x, y=None):
setposition(x, y=None)
def setposition(x, y=None):
global CurrentX, CurrentY, shape
#If y is None, x must be a pair of coordinates or a Vec2D (e.g. as returned by pos()).
# Move turtle to an absolute position. If the pen is down, draw line. Do not change the turtles orientation.
CurrentX = x
CurrentY = y
shape.append([CurrentX + LasCenterX, CurrentY + LasCenterY, CurrentColor])
def setx(x):
global CurrentX
#Set the turtles first coordinate to x, leave second coordinate unchanged.
CurrentX = x
def sety(y):
global CurrentY
#Set the turtles second coordinate to y, leave first coordinate unchanged.
CurrentY = y
def setheading(to_angle):
global CurrentAngle
#Parameters: to_angle a number (integer or float)
CurrentAngle = to_angle
def home():
global CurrentX, CurrentY, CurrentAngle , shape
#Move turtle to the origin coordinates (0,0) and set its heading to its start-orientation (which depends on the mode, see mode()).
CurrentX = 0.0
CurrentY = 0.0
CurrentAngle = 0.0
shape.append([CurrentX + LasCenterX, CurrentY + LasCenterY, CurrentColor])
def circle(radius, extent=None, steps=None):
#Draw a circle with given radius. The center is radius units left of the turtle; extent an angle determines which part of the circle is drawn. If extent is not given, draw the entire circle. If extent is not a full circle, one endpoint of the arc is the current pen position. Draw the arc in counterclockwise direction if radius is positive, otherwise in clockwise direction. Finally the direction of the turtle is changed by the amount of extent.
print("Not yet in Laser turtle.")
'''
>>> turtle.home()
>>> turtle.position()
(0.00,0.00)
>>> turtle.heading()
0.0
>>> turtle.circle(50)
>>> turtle.position()
(-0.00,0.00)
>>> turtle.heading()
0.0
>>> turtle.circle(120, 180) # draw a semicircle
>>> turtle.position()
(0.00,240.00)
>>> turtle.heading()
180.0
'''
def dot(size=None, *color):
#Draw a circular dot with diameter size, using color. If size is not given, the maximum of pensize+4 and 2*pensize is used.
print("Not yet in Laser turtle.")
'''
>>> turtle.home()
>>> turtle.dot()
>>> turtle.fd(50); turtle.dot(20, "blue"); turtle.fd(50)
>>> turtle.position()
(100.00,-0.00)
>>> turtle.heading()
0.0
'''
def stamp():
#Stamp a copy of the turtle shape onto the canvas at the current turtle position. Return a stamp_id for that stamp, which can be used to delete it by calling clearstamp(stamp_id).
print("Not yet in Laser turtle.")
'''
>>> turtle.color("blue")
>>> turtle.stamp()
11
>>> turtle.fd(50)
'''
def clearstamp(stampid):
#Delete stamp with given stampid.
print("Not yet in Laser turtle.")
'''
>>> turtle.position()
(150.00,-0.00)
>>> turtle.color("blue")
>>> astamp = turtle.stamp()
>>> turtle.fd(50)
>>> turtle.position()
(200.00,-0.00)
>>> turtle.clearstamp(astamp)
>>> turtle.position()
(200.00,-0.00)
'''
def clearstamps(n=None):
#Delete all or first/last n of turtles stamps. If n is None, delete all stamps, if n > 0 delete first n stamps, else if n < 0 delete last n stamps.
print("Not yet in Laser turtle.")
'''
>>> for i in range(8):
... turtle.stamp(); turtle.fd(30)
13
14
15
16
17
18
19
20
>>> turtle.clearstamps(2)
>>> turtle.clearstamps(-2)
>>> turtle.clearstamps()
'''
def undo():
#Undo (repeatedly) the last turtle action(s). Number of available undo actions is determined by the size of the undobuffer.
print("Not yet in Laser turtle.")
'''
>>> for i in range(4):
... turtle.fd(50); turtle.lt(80)
...
>>> for i in range(8):
... turtle.undo()
'''
def speed(speed=None):
#Set the turtles speed to an integer value in the range 0..10. If no argument is given, return current speed.
print("Not yet in Laser turtle.")
'''
If input is a number greater than 10 or smaller than 0.5, speed is set to 0. Speedstrings are mapped to speedvalues as follows:
fastest: 0
fast: 10
normal: 6
slow: 3
slowest: 1
Speeds from 1 to 10 enforce increasingly faster animation of line drawing and turtle turning.
Attention: speed = 0 means that no animation takes place. forward/back makes turtle jump and likewise left/right make the turtle turn instantly.
>>>
>>> turtle.speed()
3
>>> turtle.speed('normal')
>>> turtle.speed()
6
>>> turtle.speed(9)
>>> turtle.speed()
9
'''
def position():
pos()
def pos():
#Return the turtles current location (x,y) (as a Vec2D vector).
return (CurrentX,CurrentY)
def towards(x, y=None):
#Return the angle between the line from turtle position to position specified by (x,y), the vector or the other turtle. This depends on the turtles start orientation which depends on the mode - “standard”/”world” or “logo”).
# Currently only toward an x,y point
xDiff = x - CurrentX
yDiff = y - CurrentY
return degrees(atan2(yDiff, xDiff))
def xcor():
#Return the turtles x coordinate.
return CurrentX
def ycor():
#Return the turtles y coordinate.
return CurrentY
def heading():
#Return the turtles current heading (value depends on the turtle mode, see mode())
return CurrentAngle
def distance(x, y=None):
#Return the distance from the turtle to (x,y), the given vector, or the given other turtle, in turtle step units.
dist = math.sqrt((x - CurrentY)**2 + (y - CurrentY)**2)
return dist
def degrees(fullcircle=360.0):
#Set angle measurement units, i.e. set number of “degrees” for a full circle. Default value is 360 degrees.
print("Not yet in Laser turtle.")
'''
>>> turtle.home()
>>> turtle.left(90)
>>> turtle.heading()
90.0
Change angle measurement unit to grad (also known as gon,
grade, or gradian and equals 1/100-th of the right angle.)
>>> turtle.degrees(400.0)
>>> turtle.heading()
100.0
>>> turtle.degrees(360)
>>> turtle.heading()
90.0
'''
def radians():
#Set the angle measurement units to radians. Equivalent to degrees(2*math.pi).
print("Not yet in Laser turtle.")
'''
>>> turtle.home()
>>> turtle.left(90)
>>> turtle.heading()
90.0
>>> turtle.radians()
>>> turtle.heading()
1.5707963267948966
'''
def pendown():
down()
def pd():
down()
def down():
global CurrentColor
#Pull the pen down drawing when moving.
CurrentColor = Color
def penup():
up()
def pu():
up()
def up():
#Pull the pen up no drawing when moving.
global CurrentColor
CurrentColor = 0
def pensize(width=None):
width(width=None)
def width(width=None):
#Set the line thickness to width or return it. If resizemode is set to “auto” and turtleshape is a polygon, that polygon is drawn with the same line thickness. If no argument is given, the current pensize is returned.
print("Not yet in Laser turtle.")
'''
>>> turtle.pensize()
1
>>> turtle.pensize(10) # from here on lines of width 10 are drawn
'''
def pen(pen=None, **pendict):
#Return or set the pens attributes in a “pen-dictionary” with the following key/value pairs:
print("Not yet in Laser turtle.")
'''
shown: True/False
pendown: True/False
pencolor: color-string or color-tuple
fillcolor: color-string or color-tuple
pensize: positive number
speed: number in range 0..10
resizemode: auto or user or noresize
stretchfactor: (positive number, positive number)
outline: positive number
tilt: number
This dictionary can be used as argument for a subsequent call to pen() to restore the former pen-state. Moreover one or more of these attributes can be provided as keyword-arguments. This can be used to set several pen attributes in one statement.
>>>
>>> turtle.pen(fillcolor="black", pencolor="red", pensize=10)
>>> sorted(turtle.pen().items())
[('fillcolor', 'black'), ('outline', 1), ('pencolor', 'red'),
('pendown', True), ('pensize', 10), ('resizemode', 'noresize'),
('shearfactor', 0.0), ('shown', True), ('speed', 9),
('stretchfactor', (1.0, 1.0)), ('tilt', 0.0)]
>>> penstate=turtle.pen()
>>> turtle.color("yellow", "")
>>> turtle.penup()
>>> sorted(turtle.pen().items())[:3]
[('fillcolor', ''), ('outline', 1), ('pencolor', 'yellow')]
>>> turtle.pen(penstate, fillcolor="green")
>>> sorted(turtle.pen().items())[:3]
[('fillcolor', 'green'), ('outline', 1), ('pencolor', 'red')]
'''
def isdown():
#Return True if pen is down, False if its up.
if CurrentColor != 0:
return True
else:
return False
def pencolor(*args):
global CurrentColor
'''
Return or set the pencolor.
Four input formats are allowed:
pencolor()
Return the current pencolor as color specification string or as a tuple (see example). May be used as input to another color/pencolor/fillcolor call.
pencolor(colorstring)
Set pencolor to colorstring, which is a Tk color specification string, such as "red", "yellow", or "#33cc8c".
pencolor((r, g, b))
Set pencolor to the RGB color represented by the tuple of r, g, and b. Each of r, g, and b must be in the range 0..colormode, where colormode is either 1.0 or 255 (see colormode()).
pencolor(r, g, b)
Set pencolor to the RGB color represented by r, g, and b. Each of r, g, and b must be in the range 0..colormode.
If turtleshape is a polygon, the outline of that polygon is drawn with the newly set pencolor.
'''
#print(args, len(args))
if len(args) == 1:
colors = args[0]
#print(colors)
if colors[0]=="#":
CurrentColor = hex2int(colors)
else:
CurrentColor = rgb2int(colors)
print("CurrentColor:",CurrentColor)
else:
print(int2rgb(CurrentColor))
return int2rgb(CurrentColor)
'''
>>>
>>> colormode()
1.0
>>> turtle.pencolor()
'red'
>>> turtle.pencolor("brown")
>>> turtle.pencolor()
'brown'
>>> tup = (0.2, 0.8, 0.55)
>>> turtle.pencolor(tup)
>>> turtle.pencolor()
(0.2, 0.8, 0.5490196078431373)
>>> colormode(255)
>>> turtle.pencolor()
(51.0, 204.0, 140.0)
>>> turtle.pencolor('#32c18f')
>>> turtle.pencolor()
(50.0, 193.0, 143.0)
'''
def fillcolor(*args):
# Return or set the fillcolor.
print("Not yet in Laser turtle.")
def color(*args):
global CurrentColor
#Return or set pencolor and fillcolor.
if len(*args) ==2:
colors = args
if colors[0][0]=="#":
CurrentColor = hex2int(colors[0])
else:
print(int2rgb(CurrentColor),(0,0,0))
return (int2rgb(CurrentColor),(0,0,0))
#rgb2int(rgb)
'''
Several input formats are allowed. They use 0 to 3 arguments as follows:
color()
Return the current pencolor and the current fillcolor as a pair of color specification strings or tuples as returned by pencolor() and fillcolor().
color(colorstring), color((r,g,b)), color(r,g,b)
Inputs as in pencolor(), set both, fillcolor and pencolor, to the given value.
color(colorstring1, colorstring2), color((r1,g1,b1), (r2,g2,b2))
Equivalent to pencolor(colorstring1) and fillcolor(colorstring2) and analogously if the other input format is used.
If turtleshape is a polygon, outline and interior of that polygon is drawn with the newly set colors.
>>>
>>> turtle.color("red", "green")
>>> turtle.color()
('red', 'green')
>>> color("#285078", "#a0c8f0")
>>> color()
((40.0, 80.0, 120.0), (160.0, 200.0, 240.0))
'''
def filling():
# Return fillstate (True if filling, False else).
return False
def begin_fill():
print("Not yet in Laser turtle.")
def end_fill():
#Fill the shape drawn after the last call to begin_fill().
print("Not yet in Laser turtle.")
def reset():
#Delete the turtles drawings from the screen, re-center the turtle and set variables to the default values.
global shape
clear()
home()
def clear():
#Delete the turtles drawings from the screen. Do not move turtle. State and position of the turtle as well as drawings of other turtles are not affected.
global shape
shape = []
def write(arg, move=False, align="left", font=("Arial", 8, "normal")):
global shape
'''
Parameters:
arg object to be written to the TurtleScreen
move True/False
align one of the strings left, center or right
font a triple (fontname, fontsize, fonttype)
Write text - the string representation of arg - at the current turtle position according to align (left, center or right) and with the given font. If move is true, the pen is moved to the bottom-right corner of the text. By default, move is False.
'''
for (x1, y1), (x2, y2) in thefont.lines_for_text(arg):
shape.append([x1, -y1+400, color])
shape.append([x2 ,-y2+400, color])
'''
>>> turtle.write("Home = ", True, align="center")
>>> turtle.write((0,0), True)
'''
def hideturtle():
ht()
def ht():
#Make the turtle invisible. Its a good idea to do this while youre in the middle of doing some complex drawing, because hiding the turtle speeds up the drawing observably.
print("Not yet in Laser turtle.")
#>>> turtle.hideturtle()
def showturtle():
st()
def st():
#Make the turtle visible.
print("Not yet in Laser turtle.")
def delay(delay=None):
#Set or return the drawing delay in milliseconds. (This is approximately the time interval between two consecutive canvas updates.) The longer the drawing delay, the slower the animation.
print("Not yet in Laser turtle.")
'''
Optional argument:
>>> screen.delay()
10
>>> screen.delay(5)
>>> screen.delay()
5
'''
def mainloop():
done()
def done():
#Starts event loop - calling Tkinters mainloop function. Must be the last statement in a turtle graphics program. Must not be used if a script is run from within IDLE in -n mode (No subprocess) - for interactive use of turtle graphics.
while True:
start = time.time()
print(shape, flush=True);
looptime = time.time() - start
if( looptime < optimal_looptime ):
time.sleep( optimal_looptime - looptime)
debug(name+" micro sleep:"+str( optimal_looptime - looptime))
def window_height():
#Return the height of the turtle window.
return LasCenterX * 2
def window_width():
#Return the width of the turtle window.
return LasCenterY*2

19
generators/turtle1.py Normal file
View File

@ -0,0 +1,19 @@
#!/usr/bin/python3
# -*- coding: utf-8 -*-
# -*- mode: Python -*-
'''
Example using experimental Laserized Turtle graphics library
'''
from turtle import *
pencolor((255,0,0))
for i in range(4):
forward(100)
right(90)
done()

126
runner.py Executable file
View File

@ -0,0 +1,126 @@
#!/usr/bin/python3
import sys
import os
import signal
import subprocess
import time
import tty,termios
import re
import json
from pathlib import Path
import runner_lib as runner
def action_help():
global bindings
print("\nKey\tAction\n--------------------------------------")
for i in bindings:
print(" {}\t{}".format(bindings[i],i))
print("--------------------------------------\n")
bindings={
"Show playlist" : "l",
"Launch [0-x] cmd" : "0-x",
"Previous command" : "p",
"Next command" : "o",
"New command" : "a",
"Edit command" : "e",
"Delete command" : "d",
"Load playlist" : "L",
"Save playlist" : "S",
"Save as new" : "A",
"New playlist" : "N",
"Command help" : "H",
"Kill process Id" : "K",
"Edit Laser Id" : "i",
"Edit Laser Scene" : "s",
"Information" : "I",
"Help" : "h",
"Quit" : "q",
}
## Init user contact
# Main Loop
runner.action_info()
action_help()
print("\n\nLoad a playlist? [Y/n]: ")
if "y" == runner.inkey() :
runner.action_loadPlaylist()
while True:
# Fuck zombies
runner._killBill()
runner._ok("> Next Action?")
k = runner.inkey()
if bindings["Next command"] == k:
runner.action_changeCommand( 1 )
runner.action_runCommand()
elif bindings["Previous command"] == k:
runner.action_changeCommand( -1 )
runner.action_runCommand()
elif re.match( r'^\d+$',k):
runner.action_match(k)
runner.action_runCommand()
elif bindings["New command"] == k:
runner.action_newCommand()
continue
elif bindings["Show playlist"] == k:
runner.action_listAll()
continue
elif bindings["Delete command"] == k:
runner.action_deleteCommand()
continue
elif bindings["Edit command"] == k:
runner.action_listAll()
runner.action_edit()
continue
elif bindings["Load playlist"] == k:
if runner.action_loadPlaylist():
runner.action_listAll()
continue
elif bindings["Save playlist"] == k:
runner.action_savePlaylist()
continue
elif bindings["Save as new"] == k:
runner.action_savePlaylist()
continue
elif bindings["New playlist"] == k:
runner.action_newPlaylist()
continue
elif bindings["Command help"] == k:
runner.action_commandHelp()
continue
elif bindings["Edit Laser Id"] == k:
runner.action_laserId()
continue
elif bindings["Edit Laser Scene"] == k:
runner.action_laserScene()
continue
elif bindings["Kill process Id"] == k:
runner.action_killPid()
continue
elif bindings["Help"] == k:
action_help()
continue
elif bindings["Information"] == k:
runner.action_info()
continue
elif bindings["Quit"] == k:
runner.action_quit()
else:
runner._err("Unexpected key:{}".format(k))
continue

379
runner_lib.py Normal file
View File

@ -0,0 +1,379 @@
import sys
import os
import signal
import subprocess
import time
import tty,termios
import re
import json
from pathlib import Path
import redis
environ = {
# "REDIS_IP" : "127.0.0.1",
"REDIS_IP" : "192.168.2.44",
"REDIS_PORT" : "6379",
"REDIS_KEY" : "/pl/0/0",
"REDIS_SCENE" : "0",
"REDIS_LASER" : "0"
}
class bcolors:
HL = '\033[31m'
OKBLUE = '\033[94m'
OKGREEN = '\033[92m'
ENDC = '\033[0m'
BOLD = '\033[1m'
UNDERLINE = '\033[4m'
class _Getch:
def __call__(self):
fd = sys.stdin.fileno()
old_settings = termios.tcgetattr(fd)
try:
tty.setraw(sys.stdin.fileno())
ch = sys.stdin.read(1)
finally:
termios.tcsetattr(fd, termios.TCSADRAIN, old_settings)
return ch
inkey = _Getch()
def intkey():
try:
i = int( inkey() )
return(i)
except ValueError:
print("Error.")
current_id = 0
current_cmd = ""
process = None
current_filename = ""
currentPlayList = []
playlistsDir = Path("./playlists")
if not playlistsDir.is_dir() : playlistsDir.mkdir()
def ask(q):
print(q)
return inkey()
def _ok(msg):
print( bcolors.BOLD+bcolors.OKBLUE+ msg + bcolors.ENDC)
def _err(msg):
print( bcolors.HL + msg + bcolors.ENDC)
def _kill(process):
if process :
try:
pid = os.getpgid(process.pid)
os.killpg(pid, signal.SIGTERM)
os.killpg(pid, signal.SIGKILL)
os.kill(pid, signal.SIGTERM)
os.kill(pid, signal.SIGKILL)
process.terminate()
process.kill()
except Exception as e:
print("woops:{}".format(e))
def _killBill():
subprocess.run("ps --ppid 1 -fo pid,sess,ppid,cmd | grep 'toRedis.py' | while read pid sid other; do pkill -9 -s $sid; done", shell=True,executable='/bin/bash')
def action_info():
print("""
Welcome to LJ playlist manager
Currently running on
IP : {}
Port : {}
Key : {}
Scene : {}
Laser : {}
""".format(
environ["REDIS_IP"],
environ["REDIS_PORT"],
environ["REDIS_KEY"],
environ["REDIS_SCENE"],
environ["REDIS_LASER"]
))
def action_changeCommand( inc ):
global currentPlayList
global current_id
if 0 == len(currentPlayList):
_err("Empty playlist")
return False
current_id = (current_id + 1) % len(currentPlayList)
return True
def action_match( k ):
global current_id, currentPlayList
if int(k) > (len(currentPlayList) - 1):
print( bcolors.HL + "This key does not exist" + bcolors.ENDC )
return False
else :
_ok("Changed action id to {}.".format(k))
current_id = int(k)
def action_runCommand():
global currentPlayList
global current_id
global process
# Get new command
try:
current_cmd = currentPlayList[current_id]
except IndexError as e:
_err("woops:{}".format(e))
return False
print("\n[!]New command:'{}'\n".format(current_cmd))
# Start subprocess
try :
_kill(process)
process = subprocess.Popen("./_run.sh '"+current_cmd+" | exports/toRedis.py -i $REDIS_IP -k $REDIS_KEY'", shell=True, executable='/bin/bash', stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL, env=environ, preexec_fn=os.setsid)
except Exception as e:
print("woops:{}".format(e))
def action_newCommand():
global currentPlayList
print("Enter new command or e(x)it.")
k = input()
# Exit early
if "x" == k:
return(False)
currentPlayList.append(k)
print(bcolors.OKBLUE + "Command added" + bcolors.ENDC)
return True
def action_deleteCommand():
global currentPlayList
print("Select sequence to delete or e(x)it.")
action_listAll()
key = int(input())
# Exit early
if "x" == key:
return(False)
del currentPlayList[key]
return True
def action_listAll():
global currentPlayList, current_cmd, current_id
print("\n--------------------------------------")
for i,seq in enumerate(currentPlayList):
pre=""
suf=""
if current_cmd == seq :
pre = bcolors.HL
suf = bcolors.ENDC
print( pre + "{}\t{}".format(i,seq) + suf )
print("--------------------------------------\n")
def action_edit():
print("Enter the command number to edit, or 'x' to abort.")
k = intkey()
if 'x' == k:
return
print("Enter the next value, or 'x' to abort.")
value = input()
if 'x' == value:
return
currentPlayList[k] = value
def action_loadPlaylist():
global playlistsDir
global currentPlayList
global current_playlist_name
# list files
i=0
file_list = [x for x in playlistsDir.glob("*json")]
if 0 == len(file_list ):
print( bcolors.HL + "Error. No file in path '{}'\n".format(playlistsDir.name))
return False
print("\n Id\tName")
for k,name in enumerate(file_list) :
print(" {}\t{}".format(k,name),flush=True)
# ask file
print("\nChoose a file or e(x)it:")
k = intkey()
if '' == k:
print("Invalid choice: '{}'".format(k))
return
# Exit early
if "x" == k: return(False)
# todo : helper for detecting invalid keys
try:
if k > (len(file_list) - 1):
print( bcolors.HL + "This key '{}' does not exist".format(k) + bcolors.ENDC )
return False
except TypeError:
print( bcolors.HL + "This key '{}' is not valid".format(k) + bcolors.ENDC )
return False
# @todo replace with _loadPlaylist
playlistFile = Path("./playlists/"+file_list[k].name)
currentPlayList = json.loads(playlistFile.read_text())
current_playlist_name = file_list[k].name
current_id = 0
print( bcolors.OKBLUE + "Playlist loaded: {}\n".format(current_playlist_name)+ bcolors.ENDC)
return True
def _loadPlaylist( filename ):
global currentPlayList, current_playlist_name, current_id
try:
playlistFile = Path(filename)
currentPlayList = json.loads(playlistFile.read_text())
current_playlist_name = filename
current_id = 0
_ok("Playlist loaded: {}\n".format(current_playlist_name))
return True
except Exception as e:
_err("_loadPlaylist error when loading '{}':{}".format(filename,e))
def action_newPlaylist():
global playlistsDir
global currentPlayList
# ask for name
print("Enter new playlist name (without.json) or e(x)it question?")
k = input()
# Exit early
if "x" == k:
return(False)
# save file
currentPlayList = []
_savePlaylist( k+".json" )
currentPlayList = []
pass
def _savePlaylist( playlistname ):
global currentPlayList
filepath = Path("playlists/{}".format(playlistname))
with filepath.open("w", encoding ="utf-8") as f:
f.write(json.dumps(currentPlayList, indent=4, sort_keys=True))
return(True)
def action_savePlaylist( name=False ):
global current_playlist_name
playlist_name = name if name else current_playlist_name
if not playlist_name :
_err("No name found.")
return False
try:
_savePlaylist(playlist_name)
print( bcolors.OKBLUE + "\nSaved as '{}'.\n".format(playlist_name) + bcolors.ENDC)
except Exception as e:
print("woops:{}".format(e))
return False
def action_commandHelp():
global playlistsDir
# iterate through files
file_list=[]
for folder in ["generators","filters","exports"]:
p = Path("./"+folder)
for plFile in Path("./"+folder).iterdir() :
if re.match("^.*py$",plFile.name):
file_list.append(os.path.join(folder,plFile.name))
print("\n Id\tFile")
for k,filename in enumerate(file_list):
print(" {}\t{}".format(k,filename))
print("\nChoose a file:")
k = int(input())
print("\n-----------------------------------------------\n")
subprocess.run("python3 "+file_list[k]+" -h", shell=True, executable='/bin/bash')
print("\n-----------------------------------------------\n")
def _setKey( laser=0, scene=0 ):
global environ
laser = laser if laser else environ["REDIS_LASER"]
scene = scene if scene else environ["REDIS_SCENE"]
new_key = "/pl/{}/{}".format(scene,laser)
environ["REDIS_KEY"] = new_key
print("Sending new key '{}'".format(new_key))
def action_laserId():
k = int(ask("Enter the LJ Laser id [0-3]"))
_setKey( laser = k )
def action_laserScene():
k = int(ask("Enter the LJ Scene id [0-3]"))
_setKey( scene = k )
def action_killPid():
print("Enter pid to kill")
kill_pid = input()
subprocess.run("pkill -9 -s $(awk '{print $6}' /proc/$kill_pid/stat)", shell=True,executable='/bin/bash', env={"kill_pid":kill_pid})
def action_quit():
print("Quit [Y/n]?")
global process
quit = inkey()
if quit != "n":
_kill(process)
sys.exit(1)

87
runner_midi.py Executable file
View File

@ -0,0 +1,87 @@
#!/usr/bin/python3
import argparse
import re
import redis
import runner_lib as runner
import time
novationRows = [
[ 0, 1, 2, 3, 4, 5, 6, 7 ],
[ *range(16,24)],
[ *range(32,40)],
[ *range(48,56)]
]
argsparser = argparse.ArgumentParser(description="Playlist midi")
argsparser.add_argument("playlist",help="JSON playlist file ",type=str)
argsparser.add_argument("-i","--ip",help="IP address of the Redis server ",default="127.0.0.1",type=str)
argsparser.add_argument("-r","--row",help="Row of Novation pad. Default:1 ",default=1,type=str)
argsparser.add_argument("-k","--key",help="Redis key to update",default="0",type=str)
argsparser.add_argument("-l","--laser",help="Laser number. Default:0 ",default=0,type=int)
argsparser.add_argument("-p","--port",help="Port of the Redis server ",default="6379",type=str)
argsparser.add_argument("-s","--scene",help="Laser scene. Default:0 ",default=0,type=int)
argsparser.add_argument("-v","--verbose",action="store_true",help="Verbose")
args = argsparser.parse_args()
ip = args.ip
port = args.port
key = args.key
verbose=args.verbose
laser = args.laser
scene = args.scene
playlist = args.playlist
row = args.row - 1
rowKeys = novationRows[row]
# Subscriber
r = redis.StrictRedis(host=ip, port=port, db=0)
p = r.pubsub()
p.subscribe('/midi/last_event')
runner._killBill()
# Set Laser and scene
runner._setKey( laser = laser, scene = scene)
# Load playlist
runner._loadPlaylist( playlist )
print("Loaded playlist : {}".format(runner.currentPlayList))
runner.action_info()
runner.current_id = -1
while True:
runner._killBill()
message = p.get_message()
if message:
#runner._ok ("Subscriber: %s" % message['data'])
# b'/midi/noteon/0/19/127'
match = re.match(".*/([0-9]+)/[0-9]+",str(message['data']))
if not match:
continue
key = int(match.group(1))
# Check if the event is for us
if key not in rowKeys:
print("key {} not in {} ".format(key,rowKeys))
continue
try:
command_id = rowKeys.index(key)
cmd = runner.currentPlayList[command_id]
if command_id != runner.current_id :
runner._ok("Launching command #{}\n Previous was {}\n Cmd:{}".format(command_id,runner.current_id,cmd))
runner.action_match(command_id)
runner.action_runCommand()
else :
runner._err("Not running {} : already running.".format(command_id))
except Exception as e :
print("Woops.",e)