Compare commits
3 Commits
e44d1d58c7
...
ecf7d0381d
Author | SHA1 | Date | |
---|---|---|---|
|
ecf7d0381d | ||
|
cebdc67c54 | ||
|
e794ee2c5e |
@ -17,12 +17,10 @@ by cocoa
|
||||
|
||||
'''
|
||||
from __future__ import print_function
|
||||
import argparse
|
||||
import ast
|
||||
import json
|
||||
import os
|
||||
import redis
|
||||
import sys
|
||||
import os
|
||||
import argparse
|
||||
import redis
|
||||
import time
|
||||
|
||||
argsparser = argparse.ArgumentParser(description="Redis exporter LJ")
|
||||
@ -51,12 +49,9 @@ try:
|
||||
time.sleep(0.01)
|
||||
line = line.rstrip('\n')
|
||||
line=line[1:-1]
|
||||
# Decode as list of lists
|
||||
pointsList = ast.literal_eval(line)
|
||||
# convert to list of tuples
|
||||
pointsList = [tuple(elem) for elem in pointsList]
|
||||
# Convert to JSON string
|
||||
line = json.dumps( pointsList )
|
||||
line = line.replace("[",'(')
|
||||
line = line.replace("]",')')
|
||||
line = "[{}]".format(line)
|
||||
if r.set(key,line)==True:
|
||||
debug("exports::redis set("+str(key)+") to "+line)
|
||||
except EOFError:
|
||||
|
@ -28,11 +28,15 @@ name = "filters::cycle"
|
||||
argsparser = argparse.ArgumentParser(description="Redis exporter LJ")
|
||||
argsparser.add_argument("-x","--centerX",help="geometrical center X position",default=300,type=int)
|
||||
argsparser.add_argument("-y","--centerY",help="geometrical center Y position",default=300,type=int)
|
||||
argsparser.add_argument("-m","--min",help="Lowest value in the range 0-255",default=10,type=int)
|
||||
argsparser.add_argument("-M","--max",help="Highest value in the range 0-255",default=255,type=int)
|
||||
argsparser.add_argument("-f","--fps",help="Frame Per Second",default=30,type=int)
|
||||
argsparser.add_argument("-v","--verbose",action="store_true",help="Verbose")
|
||||
|
||||
args = argsparser.parse_args()
|
||||
fps = args.fps
|
||||
minVal = args.min
|
||||
maxVal = args.max
|
||||
centerX = args.centerX
|
||||
centerY = args.centerY
|
||||
verbose = args.verbose
|
||||
@ -60,9 +64,9 @@ def cycleColor( pl ):
|
||||
# debug(name,"pl:{}".format(pl))
|
||||
value = currentColor[composant]
|
||||
if currentDirection == UP:
|
||||
target = 255
|
||||
target = maxVal
|
||||
else:
|
||||
target = 0
|
||||
target = minVal
|
||||
value += currentDirection
|
||||
currentColor[composant] = value
|
||||
|
||||
@ -71,7 +75,7 @@ def cycleColor( pl ):
|
||||
pl[i][2] = rgb2int( currentColor)
|
||||
|
||||
# change the composant if target reached
|
||||
if value == target:
|
||||
if value <= target and currentDirection == DOWN or value >= target and currentDirection == UP :
|
||||
composant = random.randint( 0,2)
|
||||
value = currentColor[composant]
|
||||
if value == 0 :
|
||||
|
@ -29,8 +29,8 @@ import time
|
||||
name = "filters::kaleidoscope"
|
||||
|
||||
argsparser = argparse.ArgumentParser(description="Redis exporter LJ")
|
||||
argsparser.add_argument("-x","--centerX",help="geometrical center X position",default=300,type=int)
|
||||
argsparser.add_argument("-y","--centerY",help="geometrical center Y position",default=300,type=int)
|
||||
argsparser.add_argument("-x","--centerX",help="geometrical center X position",default=400,type=int)
|
||||
argsparser.add_argument("-y","--centerY",help="geometrical center Y position",default=400,type=int)
|
||||
argsparser.add_argument("-f","--fps",help="Frame Per Second",default=30,type=int)
|
||||
argsparser.add_argument("-v","--verbose",action="store_true",help="Verbose")
|
||||
|
||||
|
193
clitools/filters/redilysis.py
Executable file
193
clitools/filters/redilysis.py
Executable file
@ -0,0 +1,193 @@
|
||||
#!/usr/bin/python3
|
||||
# -*- coding: utf-8 -*-
|
||||
# -*- mode: Python -*-
|
||||
|
||||
|
||||
'''
|
||||
|
||||
redilysis
|
||||
v0.1.0
|
||||
|
||||
A complex effect that depends on redis keys for audio analysis
|
||||
|
||||
see https://git.interhacker.space/teamlase/redilysis for more informations
|
||||
about the redilysis project
|
||||
|
||||
LICENCE : CC
|
||||
|
||||
by cocoa
|
||||
|
||||
|
||||
'''
|
||||
from __future__ import print_function
|
||||
import argparse
|
||||
import ast
|
||||
import os
|
||||
import math
|
||||
import random
|
||||
import redis
|
||||
import sys
|
||||
import time
|
||||
name = "filters::redilysis"
|
||||
|
||||
def debug(*args, **kwargs):
|
||||
if( verbose == False ):
|
||||
return
|
||||
print(*args, file=sys.stderr, **kwargs)
|
||||
def now():
|
||||
return time.time() * 1000
|
||||
|
||||
# The list of available modes and the redis keys they need
|
||||
oModeList = {
|
||||
"rms_noise": ["rms"],
|
||||
"rms_size": ["rms"],
|
||||
"bpm_size": ["bpm"]
|
||||
}
|
||||
CHAOS = 1
|
||||
REDIS_FREQ = 300
|
||||
|
||||
# General Args
|
||||
argsparser = argparse.ArgumentParser(description="Redilysis filter")
|
||||
argsparser.add_argument("-v","--verbose",action="store_true",help="Verbose")
|
||||
# Redis Args
|
||||
argsparser.add_argument("-i","--ip",help="IP address of the Redis server ",default="127.0.0.1",type=str)
|
||||
argsparser.add_argument("-p","--port",help="Port of the Redis server ",default="6379",type=str)
|
||||
argsparser.add_argument("-s","--redis-freq",help="Query Redis every x (in milliseconds). Default:{}".format(REDIS_FREQ),default=REDIS_FREQ,type=int)
|
||||
# General args
|
||||
argsparser.add_argument("-x","--centerX",help="geometrical center X position",default=400,type=int)
|
||||
argsparser.add_argument("-y","--centerY",help="geometrical center Y position",default=400,type=int)
|
||||
argsparser.add_argument("-f","--fps",help="Frame Per Second",default=30,type=int)
|
||||
# Modes And Common Modes Parameters
|
||||
argsparser.add_argument("-m","--modelist",required=True,help="Comma separated list of modes to use from: {}".format("i, ".join(oModeList.keys())),type=str)
|
||||
argsparser.add_argument("--chaos",help="How much disorder to bring. High value = More chaos. Default {}".format(CHAOS), default=CHAOS, type=str)
|
||||
|
||||
args = argsparser.parse_args()
|
||||
ip = args.ip
|
||||
port = args.port
|
||||
redisFreq = args.redis_freq
|
||||
verbose = args.verbose
|
||||
fps = args.fps
|
||||
centerX = args.centerX
|
||||
centerY = args.centerY
|
||||
chaos = float(args.chaos)
|
||||
optimal_looptime = 1 / fps
|
||||
|
||||
modeList = args.modelist.split(",")
|
||||
redisKeys = []
|
||||
for mode in modeList:
|
||||
if not mode in oModeList:
|
||||
print("Mode '{}' is invalid. Exiting.".format(mode))
|
||||
sys.exit(2)
|
||||
redisKeys += oModeList[mode]
|
||||
redisKeys = list(set(redisKeys))
|
||||
debug(name,"Redis Keys:{}".format(redisKeys))
|
||||
redisData = {}
|
||||
redisLastHit = now() - redisFreq
|
||||
r = redis.Redis(
|
||||
host=ip,
|
||||
port=port)
|
||||
|
||||
# Records the last bpm
|
||||
last_bpm = time.time()
|
||||
|
||||
def gauss(x, mu, sigma):
|
||||
return( math.exp(-math.pow((x-mu),2)/(2*math.pow(sigma,2))/math.sqrt(2*math.pi*math.pow(sigma,2))))
|
||||
|
||||
|
||||
def bpm_size( pl ):
|
||||
global last_bpm
|
||||
bpm = float(redisData["bpm"])
|
||||
# Milliseconds ber beat
|
||||
milliSecondsPerBeat = int(60 / bpm * 1000)
|
||||
# Calculate the intensity based on bpm coming/leaving
|
||||
# The curb is a gaussian
|
||||
mu = math.sqrt(milliSecondsPerBeat)
|
||||
milliTimeToLastBeat = (time.time() - last_bpm) * 1000
|
||||
milliTimeToNextBeat = (milliSecondsPerBeat - milliTimeToLastBeat)
|
||||
intensity = gauss( milliTimeToNextBeat, 0 , mu)
|
||||
debug(name,"bpm_size","milliSecondsPerBeat:{}\tmu:{}".format(milliSecondsPerBeat, mu))
|
||||
debug(name,"bpm_size","milliTimeToLastBeat:{}\tmilliTimeToNextBeat:{}\tintensity:{}".format(milliTimeToLastBeat, milliTimeToNextBeat, intensity))
|
||||
if milliTimeToNextBeat <= 0 :
|
||||
last_bpm = time.time()
|
||||
for i, point in enumerate(pl):
|
||||
ref_x = point[0]-centerX
|
||||
ref_y = point[1]-centerY
|
||||
#debug(name,"In new ref x:{} y:{}".format(point[0]-centerX,point[1]-centerY))
|
||||
angle=math.atan2( point[0] - centerX , point[1] - centerY )
|
||||
l = ref_y / math.cos(angle)
|
||||
new_l = l * intensity
|
||||
#debug(name,"bpm_size","angle:{} l:{} new_l:{}".format(angle,l,new_l))
|
||||
new_x = math.sin(angle) * new_l + centerX
|
||||
new_y = math.cos(angle) * new_l + centerY
|
||||
#debug(name,"x,y:({},{}) x',y':({},{})".format(point[0],point[1],new_x,new_y))
|
||||
pl[i][0] = new_x
|
||||
pl[i][1] = new_y
|
||||
#debug( name,"bpm_noise output:{}".format(pl))
|
||||
return pl
|
||||
|
||||
def rms_size( pl ):
|
||||
rms = float(redisData["rms"])
|
||||
for i, point in enumerate(pl):
|
||||
|
||||
ref_x = point[0]-centerX
|
||||
ref_y = point[1]-centerY
|
||||
debug(name,"In new ref x:{} y:{}".format(point[0]-centerX,point[1]-centerY))
|
||||
angle=math.atan2( point[0] - centerX , point[1] - centerY )
|
||||
l = ref_y / math.cos(angle)
|
||||
debug(name,"angle:{} l:{}".format(angle,l))
|
||||
new_l = l + rms * chaos
|
||||
new_x = math.sin(angle) * new_l + centerX
|
||||
new_y = math.cos(angle) * new_l + centerY
|
||||
debug(name,"x,y:({},{}) x',y':({},{})".format(point[0],point[1],new_x,new_y))
|
||||
pl[i][0] = new_x
|
||||
pl[i][1] = new_y
|
||||
#debug( name,"rms_noise output:{}".format(pl))
|
||||
return pl
|
||||
|
||||
def rms_noise( pl ):
|
||||
rms = float(redisData["rms"])
|
||||
debug(name, "pl:{}".format(pl))
|
||||
for i, point in enumerate(pl):
|
||||
#debug(name,"rms_noise chaos:{} rms:{}".format(chaos, rms))
|
||||
xRandom = random.uniform(-1,1) * rms * chaos
|
||||
yRandom = random.uniform(-1,1) * rms * chaos
|
||||
#debug(name,"rms_noise xRandom:{} yRandom:{}".format(xRandom, yRandom))
|
||||
pl[i][0] += xRandom
|
||||
pl[i][1] += yRandom
|
||||
#debug( name,"rms_noise output:{}".format(pl))
|
||||
return pl
|
||||
|
||||
|
||||
def updateRedis():
|
||||
global redisLastHit
|
||||
global redisData
|
||||
for key in redisKeys:
|
||||
redisData[key] = r.get(key).decode('ascii')
|
||||
debug("name","updateRedis key:{} value:{}".format(key,redisData[key]))
|
||||
if key == 'bpm':
|
||||
redisData['bpm_ttl'] = r.pttl(key)
|
||||
debug(name,"redisData:{}".format(redisData))
|
||||
|
||||
try:
|
||||
while True:
|
||||
# it is time to query redis
|
||||
if now() - redisLastHit > redisFreq:
|
||||
updateRedis()
|
||||
start = time.time()
|
||||
line = sys.stdin.readline()
|
||||
if line == "":
|
||||
time.sleep(0.01)
|
||||
line = line.rstrip('\n')
|
||||
pointsList = ast.literal_eval(line)
|
||||
# Do the filter
|
||||
for mode in modeList:
|
||||
pointsList = locals()[mode](pointsList)
|
||||
print( pointsList, flush=True )
|
||||
looptime = time.time() - start
|
||||
# debug(name+" looptime:"+str(looptime))
|
||||
if( looptime < optimal_looptime ):
|
||||
time.sleep( optimal_looptime - looptime)
|
||||
# debug(name+" micro sleep:"+str( optimal_looptime - looptime))
|
||||
except EOFError:
|
||||
debug(name+" break")# no more information
|
||||
|
@ -41,8 +41,8 @@ debug(name+" optimal looptime "+str(optimal_looptime))
|
||||
|
||||
while True:
|
||||
start = time.time()
|
||||
#print("[(100.0, 100.0, 65280), (100.0, 500.0, 65280), (500.0, 500.0, 65280), (500.0, 100.0, 65280), (100.0, 100.0, 65280)]", flush=True);
|
||||
print("[[100.0, 100.0, 65280], [110.0, 500.0, 65280], [510.0, 500.0, 65280], [510.0, 100.0, 65280], [100.0, 110.0, 65280]]", flush=True);
|
||||
print("[[100.0, 100.0, 65280], [100.0, 500.0, 65280], [500.0, 500.0, 65280], [500.0, 100.0, 65280], [100.0, 100.0, 65280]]", flush=True);
|
||||
#print("[[100.0, 100.0, 65280], [110.0, 500.0, 65280], [510.0, 500.0, 65280], [510.0, 100.0, 65280], [100.0, 110.0, 65280]]", flush=True);
|
||||
looptime = time.time() - start
|
||||
if( looptime < optimal_looptime ):
|
||||
time.sleep( optimal_looptime - looptime)
|
||||
|
@ -17,9 +17,11 @@ by cocoa
|
||||
'''
|
||||
|
||||
from __future__ import print_function
|
||||
import time
|
||||
import argparse
|
||||
import math
|
||||
import random
|
||||
import sys
|
||||
import time
|
||||
name="generator::tunnel"
|
||||
|
||||
def debug(*args, **kwargs):
|
||||
@ -29,25 +31,28 @@ def debug(*args, **kwargs):
|
||||
|
||||
|
||||
argsparser = argparse.ArgumentParser(description="tunnel generator")
|
||||
argsparser.add_argument("-x","--centerX",help="geometrical center X position",default=300,type=int)
|
||||
argsparser.add_argument("-y","--centerY",help="geometrical center Y position",default=300,type=int)
|
||||
argsparser.add_argument("-s","--speed",help="point per frame progress",default=3,type=int)
|
||||
argsparser.add_argument("-i","--interval",help="point per form interval",default=30,type=int)
|
||||
argsparser.add_argument("-m","--max-size",help="maximum size for objects",default=300,type=int)
|
||||
argsparser.add_argument("-f","--fps",help="Frame Per Second",default=30,type=int)
|
||||
argsparser.add_argument("-c","--color",help="Color",default=65280,type=int)
|
||||
argsparser.add_argument("-f","--fps",help="Frame Per Second",default=30,type=int)
|
||||
argsparser.add_argument("-i","--interval",help="point per shape interval",default=30,type=int)
|
||||
argsparser.add_argument("-m","--max-size",help="maximum size for objects",default=500,type=int)
|
||||
argsparser.add_argument("-r","--randomize",help="center randomization",default=5,type=int)
|
||||
argsparser.add_argument("-s","--speed",help="point per frame progress",default=3,type=int)
|
||||
argsparser.add_argument("-v","--verbose",action="store_true",help="Verbose output")
|
||||
argsparser.add_argument("-x","--centerX",help="geometrical center X position",default=400,type=int)
|
||||
argsparser.add_argument("-y","--centerY",help="geometrical center Y position",default=400,type=int)
|
||||
|
||||
args = argsparser.parse_args()
|
||||
color = args.color
|
||||
fps = args.fps
|
||||
centerX = args.centerX
|
||||
centerY = args.centerY
|
||||
color = args.color
|
||||
fps = args.fps
|
||||
interval = args.interval
|
||||
max_size = args.max_size
|
||||
randomize = args.randomize
|
||||
speed = args.speed
|
||||
verbose = args.verbose
|
||||
|
||||
origSpeed = speed
|
||||
optimal_looptime = 1 / fps
|
||||
square = [
|
||||
[-1,1],
|
||||
@ -57,38 +62,71 @@ square = [
|
||||
[-1,1]
|
||||
]
|
||||
|
||||
shape = square
|
||||
currentCenter = [centerX, centerY]
|
||||
centerVector= [0,0]
|
||||
# tweak random basis
|
||||
if randomize % 2 == 1:
|
||||
randomize += 1
|
||||
debug(name,"randomize:{}".format(randomize))
|
||||
centerRand = int(math.sqrt(randomize) / 4 ) + 1
|
||||
debug( name, "centerRand:{}".format(centerRand ) )
|
||||
class polylineGenerator( object ):
|
||||
|
||||
def __init__( self ):
|
||||
self.polylineList = [0]
|
||||
self.polylineList = [[0,[currentCenter[0],currentCenter[1]]]]
|
||||
self.buf = []
|
||||
|
||||
def draw( self ):
|
||||
self.buf = []
|
||||
for it_pl, size in enumerate(self.polylineList):
|
||||
for it_sqr, point in enumerate(square):
|
||||
x = centerX + point[0]*size
|
||||
y = centerY + point[1]*size
|
||||
for it_pl, infoList in enumerate(self.polylineList):
|
||||
size = infoList[0]
|
||||
center = infoList[1]
|
||||
for it_sqr, point in enumerate(shape):
|
||||
x = center[0] + point[0]*size
|
||||
y = center[1] + point[1]*size
|
||||
# Add an invisible point in first location
|
||||
if 0 == it_sqr:
|
||||
self.buf.append([x,y,0])
|
||||
self.buf.append([x,y,color])
|
||||
debug( name, "buf size:", str(len(self.buf)) )
|
||||
#debug( name, "buf size:", str(len(self.buf)) )
|
||||
return self.buf
|
||||
|
||||
def increment(self):
|
||||
global speed
|
||||
self.buffer = []
|
||||
min_size = 9999
|
||||
delList = []
|
||||
for i, size in enumerate(self.polylineList):
|
||||
if randomize :
|
||||
# Change the vector
|
||||
centerVector[0] += random.randrange( -centerRand,centerRand )
|
||||
centerVector[1] += random.randrange( -centerRand,centerRand )
|
||||
# Modify the vector if it is over the limit
|
||||
if currentCenter[0] + centerVector[0] >= centerX + randomize or currentCenter[0] + centerVector[0] <= centerX - randomize:
|
||||
centerVector[0] = 0
|
||||
if currentCenter[1] + centerVector[1] >= centerY + randomize or currentCenter[1] +centerVector[1] <= centerY - randomize:
|
||||
centerVector[1] = 0
|
||||
currentCenter[0] += centerVector[0]
|
||||
currentCenter[1] += centerVector[1]
|
||||
# Change speed
|
||||
speed += int( random.randrange( int(-origSpeed),origSpeed ) )
|
||||
if speed < origSpeed :
|
||||
speed = origSpeed
|
||||
elif speed > (origSpeed + randomize / 2) :
|
||||
speed = origSpeed + randomize / 2
|
||||
debug(name, "currentCenter:{} speed:{}".format(currentCenter,speed))
|
||||
|
||||
for i, shapeInfo in enumerate(self.polylineList):
|
||||
size = shapeInfo[0]
|
||||
size += speed
|
||||
if size < min_size : min_size = size
|
||||
if size > max_size : delList.append(i)
|
||||
self.polylineList[i] = size
|
||||
self.polylineList[i][0] = size
|
||||
for i in delList:
|
||||
del self.polylineList[i]
|
||||
if min_size >= interval: self.polylineList.append(0)
|
||||
debug(name, "polyline:",self.polylineList)
|
||||
if min_size >= interval: self.polylineList.append([0,[currentCenter[0],currentCenter[1]]])
|
||||
#debug(name, "polyline:",self.polylineList)
|
||||
|
||||
|
||||
pgen = polylineGenerator()
|
||||
|
||||
@ -100,12 +138,13 @@ while True:
|
||||
pgen.increment()
|
||||
|
||||
# send
|
||||
print(pgen.draw(), flush=True);
|
||||
|
||||
pl = pgen.draw()
|
||||
print(pl, flush=True)
|
||||
debug(name,"output:{}".format(pl))
|
||||
|
||||
looptime = time.time() - start
|
||||
if( looptime < optimal_looptime ):
|
||||
time.sleep( optimal_looptime - looptime)
|
||||
debug(name+" micro sleep:"+str( optimal_looptime - looptime))
|
||||
#debug(name+" micro sleep:"+str( optimal_looptime - looptime))
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user