Compare commits

...

3 Commits

6 changed files with 277 additions and 46 deletions

View File

@ -17,12 +17,10 @@ by cocoa
'''
from __future__ import print_function
import argparse
import ast
import json
import os
import redis
import sys
import os
import argparse
import redis
import time
argsparser = argparse.ArgumentParser(description="Redis exporter LJ")
@ -51,12 +49,9 @@ try:
time.sleep(0.01)
line = line.rstrip('\n')
line=line[1:-1]
# Decode as list of lists
pointsList = ast.literal_eval(line)
# convert to list of tuples
pointsList = [tuple(elem) for elem in pointsList]
# Convert to JSON string
line = json.dumps( pointsList )
line = line.replace("[",'(')
line = line.replace("]",')')
line = "[{}]".format(line)
if r.set(key,line)==True:
debug("exports::redis set("+str(key)+") to "+line)
except EOFError:

View File

@ -28,11 +28,15 @@ name = "filters::cycle"
argsparser = argparse.ArgumentParser(description="Redis exporter LJ")
argsparser.add_argument("-x","--centerX",help="geometrical center X position",default=300,type=int)
argsparser.add_argument("-y","--centerY",help="geometrical center Y position",default=300,type=int)
argsparser.add_argument("-m","--min",help="Lowest value in the range 0-255",default=10,type=int)
argsparser.add_argument("-M","--max",help="Highest value in the range 0-255",default=255,type=int)
argsparser.add_argument("-f","--fps",help="Frame Per Second",default=30,type=int)
argsparser.add_argument("-v","--verbose",action="store_true",help="Verbose")
args = argsparser.parse_args()
fps = args.fps
minVal = args.min
maxVal = args.max
centerX = args.centerX
centerY = args.centerY
verbose = args.verbose
@ -60,9 +64,9 @@ def cycleColor( pl ):
# debug(name,"pl:{}".format(pl))
value = currentColor[composant]
if currentDirection == UP:
target = 255
target = maxVal
else:
target = 0
target = minVal
value += currentDirection
currentColor[composant] = value
@ -71,7 +75,7 @@ def cycleColor( pl ):
pl[i][2] = rgb2int( currentColor)
# change the composant if target reached
if value == target:
if value <= target and currentDirection == DOWN or value >= target and currentDirection == UP :
composant = random.randint( 0,2)
value = currentColor[composant]
if value == 0 :

View File

@ -29,8 +29,8 @@ import time
name = "filters::kaleidoscope"
argsparser = argparse.ArgumentParser(description="Redis exporter LJ")
argsparser.add_argument("-x","--centerX",help="geometrical center X position",default=300,type=int)
argsparser.add_argument("-y","--centerY",help="geometrical center Y position",default=300,type=int)
argsparser.add_argument("-x","--centerX",help="geometrical center X position",default=400,type=int)
argsparser.add_argument("-y","--centerY",help="geometrical center Y position",default=400,type=int)
argsparser.add_argument("-f","--fps",help="Frame Per Second",default=30,type=int)
argsparser.add_argument("-v","--verbose",action="store_true",help="Verbose")

193
clitools/filters/redilysis.py Executable file
View File

@ -0,0 +1,193 @@
#!/usr/bin/python3
# -*- coding: utf-8 -*-
# -*- mode: Python -*-
'''
redilysis
v0.1.0
A complex effect that depends on redis keys for audio analysis
see https://git.interhacker.space/teamlase/redilysis for more informations
about the redilysis project
LICENCE : CC
by cocoa
'''
from __future__ import print_function
import argparse
import ast
import os
import math
import random
import redis
import sys
import time
name = "filters::redilysis"
def debug(*args, **kwargs):
if( verbose == False ):
return
print(*args, file=sys.stderr, **kwargs)
def now():
return time.time() * 1000
# The list of available modes and the redis keys they need
oModeList = {
"rms_noise": ["rms"],
"rms_size": ["rms"],
"bpm_size": ["bpm"]
}
CHAOS = 1
REDIS_FREQ = 300
# General Args
argsparser = argparse.ArgumentParser(description="Redilysis filter")
argsparser.add_argument("-v","--verbose",action="store_true",help="Verbose")
# Redis Args
argsparser.add_argument("-i","--ip",help="IP address of the Redis server ",default="127.0.0.1",type=str)
argsparser.add_argument("-p","--port",help="Port of the Redis server ",default="6379",type=str)
argsparser.add_argument("-s","--redis-freq",help="Query Redis every x (in milliseconds). Default:{}".format(REDIS_FREQ),default=REDIS_FREQ,type=int)
# General args
argsparser.add_argument("-x","--centerX",help="geometrical center X position",default=400,type=int)
argsparser.add_argument("-y","--centerY",help="geometrical center Y position",default=400,type=int)
argsparser.add_argument("-f","--fps",help="Frame Per Second",default=30,type=int)
# Modes And Common Modes Parameters
argsparser.add_argument("-m","--modelist",required=True,help="Comma separated list of modes to use from: {}".format("i, ".join(oModeList.keys())),type=str)
argsparser.add_argument("--chaos",help="How much disorder to bring. High value = More chaos. Default {}".format(CHAOS), default=CHAOS, type=str)
args = argsparser.parse_args()
ip = args.ip
port = args.port
redisFreq = args.redis_freq
verbose = args.verbose
fps = args.fps
centerX = args.centerX
centerY = args.centerY
chaos = float(args.chaos)
optimal_looptime = 1 / fps
modeList = args.modelist.split(",")
redisKeys = []
for mode in modeList:
if not mode in oModeList:
print("Mode '{}' is invalid. Exiting.".format(mode))
sys.exit(2)
redisKeys += oModeList[mode]
redisKeys = list(set(redisKeys))
debug(name,"Redis Keys:{}".format(redisKeys))
redisData = {}
redisLastHit = now() - redisFreq
r = redis.Redis(
host=ip,
port=port)
# Records the last bpm
last_bpm = time.time()
def gauss(x, mu, sigma):
return( math.exp(-math.pow((x-mu),2)/(2*math.pow(sigma,2))/math.sqrt(2*math.pi*math.pow(sigma,2))))
def bpm_size( pl ):
global last_bpm
bpm = float(redisData["bpm"])
# Milliseconds ber beat
milliSecondsPerBeat = int(60 / bpm * 1000)
# Calculate the intensity based on bpm coming/leaving
# The curb is a gaussian
mu = math.sqrt(milliSecondsPerBeat)
milliTimeToLastBeat = (time.time() - last_bpm) * 1000
milliTimeToNextBeat = (milliSecondsPerBeat - milliTimeToLastBeat)
intensity = gauss( milliTimeToNextBeat, 0 , mu)
debug(name,"bpm_size","milliSecondsPerBeat:{}\tmu:{}".format(milliSecondsPerBeat, mu))
debug(name,"bpm_size","milliTimeToLastBeat:{}\tmilliTimeToNextBeat:{}\tintensity:{}".format(milliTimeToLastBeat, milliTimeToNextBeat, intensity))
if milliTimeToNextBeat <= 0 :
last_bpm = time.time()
for i, point in enumerate(pl):
ref_x = point[0]-centerX
ref_y = point[1]-centerY
#debug(name,"In new ref x:{} y:{}".format(point[0]-centerX,point[1]-centerY))
angle=math.atan2( point[0] - centerX , point[1] - centerY )
l = ref_y / math.cos(angle)
new_l = l * intensity
#debug(name,"bpm_size","angle:{} l:{} new_l:{}".format(angle,l,new_l))
new_x = math.sin(angle) * new_l + centerX
new_y = math.cos(angle) * new_l + centerY
#debug(name,"x,y:({},{}) x',y':({},{})".format(point[0],point[1],new_x,new_y))
pl[i][0] = new_x
pl[i][1] = new_y
#debug( name,"bpm_noise output:{}".format(pl))
return pl
def rms_size( pl ):
rms = float(redisData["rms"])
for i, point in enumerate(pl):
ref_x = point[0]-centerX
ref_y = point[1]-centerY
debug(name,"In new ref x:{} y:{}".format(point[0]-centerX,point[1]-centerY))
angle=math.atan2( point[0] - centerX , point[1] - centerY )
l = ref_y / math.cos(angle)
debug(name,"angle:{} l:{}".format(angle,l))
new_l = l + rms * chaos
new_x = math.sin(angle) * new_l + centerX
new_y = math.cos(angle) * new_l + centerY
debug(name,"x,y:({},{}) x',y':({},{})".format(point[0],point[1],new_x,new_y))
pl[i][0] = new_x
pl[i][1] = new_y
#debug( name,"rms_noise output:{}".format(pl))
return pl
def rms_noise( pl ):
rms = float(redisData["rms"])
debug(name, "pl:{}".format(pl))
for i, point in enumerate(pl):
#debug(name,"rms_noise chaos:{} rms:{}".format(chaos, rms))
xRandom = random.uniform(-1,1) * rms * chaos
yRandom = random.uniform(-1,1) * rms * chaos
#debug(name,"rms_noise xRandom:{} yRandom:{}".format(xRandom, yRandom))
pl[i][0] += xRandom
pl[i][1] += yRandom
#debug( name,"rms_noise output:{}".format(pl))
return pl
def updateRedis():
global redisLastHit
global redisData
for key in redisKeys:
redisData[key] = r.get(key).decode('ascii')
debug("name","updateRedis key:{} value:{}".format(key,redisData[key]))
if key == 'bpm':
redisData['bpm_ttl'] = r.pttl(key)
debug(name,"redisData:{}".format(redisData))
try:
while True:
# it is time to query redis
if now() - redisLastHit > redisFreq:
updateRedis()
start = time.time()
line = sys.stdin.readline()
if line == "":
time.sleep(0.01)
line = line.rstrip('\n')
pointsList = ast.literal_eval(line)
# Do the filter
for mode in modeList:
pointsList = locals()[mode](pointsList)
print( pointsList, flush=True )
looptime = time.time() - start
# debug(name+" looptime:"+str(looptime))
if( looptime < optimal_looptime ):
time.sleep( optimal_looptime - looptime)
# debug(name+" micro sleep:"+str( optimal_looptime - looptime))
except EOFError:
debug(name+" break")# no more information

View File

@ -41,8 +41,8 @@ debug(name+" optimal looptime "+str(optimal_looptime))
while True:
start = time.time()
#print("[(100.0, 100.0, 65280), (100.0, 500.0, 65280), (500.0, 500.0, 65280), (500.0, 100.0, 65280), (100.0, 100.0, 65280)]", flush=True);
print("[[100.0, 100.0, 65280], [110.0, 500.0, 65280], [510.0, 500.0, 65280], [510.0, 100.0, 65280], [100.0, 110.0, 65280]]", flush=True);
print("[[100.0, 100.0, 65280], [100.0, 500.0, 65280], [500.0, 500.0, 65280], [500.0, 100.0, 65280], [100.0, 100.0, 65280]]", flush=True);
#print("[[100.0, 100.0, 65280], [110.0, 500.0, 65280], [510.0, 500.0, 65280], [510.0, 100.0, 65280], [100.0, 110.0, 65280]]", flush=True);
looptime = time.time() - start
if( looptime < optimal_looptime ):
time.sleep( optimal_looptime - looptime)

View File

@ -17,9 +17,11 @@ by cocoa
'''
from __future__ import print_function
import time
import argparse
import math
import random
import sys
import time
name="generator::tunnel"
def debug(*args, **kwargs):
@ -29,25 +31,28 @@ def debug(*args, **kwargs):
argsparser = argparse.ArgumentParser(description="tunnel generator")
argsparser.add_argument("-x","--centerX",help="geometrical center X position",default=300,type=int)
argsparser.add_argument("-y","--centerY",help="geometrical center Y position",default=300,type=int)
argsparser.add_argument("-s","--speed",help="point per frame progress",default=3,type=int)
argsparser.add_argument("-i","--interval",help="point per form interval",default=30,type=int)
argsparser.add_argument("-m","--max-size",help="maximum size for objects",default=300,type=int)
argsparser.add_argument("-f","--fps",help="Frame Per Second",default=30,type=int)
argsparser.add_argument("-c","--color",help="Color",default=65280,type=int)
argsparser.add_argument("-f","--fps",help="Frame Per Second",default=30,type=int)
argsparser.add_argument("-i","--interval",help="point per shape interval",default=30,type=int)
argsparser.add_argument("-m","--max-size",help="maximum size for objects",default=500,type=int)
argsparser.add_argument("-r","--randomize",help="center randomization",default=5,type=int)
argsparser.add_argument("-s","--speed",help="point per frame progress",default=3,type=int)
argsparser.add_argument("-v","--verbose",action="store_true",help="Verbose output")
argsparser.add_argument("-x","--centerX",help="geometrical center X position",default=400,type=int)
argsparser.add_argument("-y","--centerY",help="geometrical center Y position",default=400,type=int)
args = argsparser.parse_args()
color = args.color
fps = args.fps
centerX = args.centerX
centerY = args.centerY
color = args.color
fps = args.fps
interval = args.interval
max_size = args.max_size
randomize = args.randomize
speed = args.speed
verbose = args.verbose
origSpeed = speed
optimal_looptime = 1 / fps
square = [
[-1,1],
@ -57,38 +62,71 @@ square = [
[-1,1]
]
shape = square
currentCenter = [centerX, centerY]
centerVector= [0,0]
# tweak random basis
if randomize % 2 == 1:
randomize += 1
debug(name,"randomize:{}".format(randomize))
centerRand = int(math.sqrt(randomize) / 4 ) + 1
debug( name, "centerRand:{}".format(centerRand ) )
class polylineGenerator( object ):
def __init__( self ):
self.polylineList = [0]
self.polylineList = [[0,[currentCenter[0],currentCenter[1]]]]
self.buf = []
def draw( self ):
self.buf = []
for it_pl, size in enumerate(self.polylineList):
for it_sqr, point in enumerate(square):
x = centerX + point[0]*size
y = centerY + point[1]*size
for it_pl, infoList in enumerate(self.polylineList):
size = infoList[0]
center = infoList[1]
for it_sqr, point in enumerate(shape):
x = center[0] + point[0]*size
y = center[1] + point[1]*size
# Add an invisible point in first location
if 0 == it_sqr:
self.buf.append([x,y,0])
self.buf.append([x,y,color])
debug( name, "buf size:", str(len(self.buf)) )
#debug( name, "buf size:", str(len(self.buf)) )
return self.buf
def increment(self):
global speed
self.buffer = []
min_size = 9999
delList = []
for i, size in enumerate(self.polylineList):
if randomize :
# Change the vector
centerVector[0] += random.randrange( -centerRand,centerRand )
centerVector[1] += random.randrange( -centerRand,centerRand )
# Modify the vector if it is over the limit
if currentCenter[0] + centerVector[0] >= centerX + randomize or currentCenter[0] + centerVector[0] <= centerX - randomize:
centerVector[0] = 0
if currentCenter[1] + centerVector[1] >= centerY + randomize or currentCenter[1] +centerVector[1] <= centerY - randomize:
centerVector[1] = 0
currentCenter[0] += centerVector[0]
currentCenter[1] += centerVector[1]
# Change speed
speed += int( random.randrange( int(-origSpeed),origSpeed ) )
if speed < origSpeed :
speed = origSpeed
elif speed > (origSpeed + randomize / 2) :
speed = origSpeed + randomize / 2
debug(name, "currentCenter:{} speed:{}".format(currentCenter,speed))
for i, shapeInfo in enumerate(self.polylineList):
size = shapeInfo[0]
size += speed
if size < min_size : min_size = size
if size > max_size : delList.append(i)
self.polylineList[i] = size
self.polylineList[i][0] = size
for i in delList:
del self.polylineList[i]
if min_size >= interval: self.polylineList.append(0)
debug(name, "polyline:",self.polylineList)
if min_size >= interval: self.polylineList.append([0,[currentCenter[0],currentCenter[1]]])
#debug(name, "polyline:",self.polylineList)
pgen = polylineGenerator()
@ -100,12 +138,13 @@ while True:
pgen.increment()
# send
print(pgen.draw(), flush=True);
pl = pgen.draw()
print(pl, flush=True)
debug(name,"output:{}".format(pl))
looptime = time.time() - start
if( looptime < optimal_looptime ):
time.sleep( optimal_looptime - looptime)
debug(name+" micro sleep:"+str( optimal_looptime - looptime))
#debug(name+" micro sleep:"+str( optimal_looptime - looptime))