149 lines
4.9 KiB
Python
149 lines
4.9 KiB
Python
|
import ctypes
|
||
|
|
||
|
from libs3 import gstt
|
||
|
from libs3 import homographyp
|
||
|
from .tracer_common import Tracer, OnePointIterator, ProtocolError, Status
|
||
|
import numpy as np
|
||
|
from pathlib import Path
|
||
|
|
||
|
|
||
|
# Define point structure
|
||
|
class HeliosPoint(ctypes.Structure):
|
||
|
# _pack_=1
|
||
|
_fields_ = [('x', ctypes.c_uint16),
|
||
|
('y', ctypes.c_uint16),
|
||
|
('r', ctypes.c_uint8),
|
||
|
('g', ctypes.c_uint8),
|
||
|
('b', ctypes.c_uint8),
|
||
|
('i', ctypes.c_uint8)]
|
||
|
|
||
|
|
||
|
# Load and initialize library
|
||
|
so_path = Path(__file__).absolute().parent.joinpath("libHeliosDacAPI.so")
|
||
|
HeliosLib = ctypes.cdll.LoadLibrary(so_path)
|
||
|
numDevices = HeliosLib.OpenDevices()
|
||
|
print("Found ", numDevices, "Helios DACs")
|
||
|
|
||
|
|
||
|
class TracerHelios(Tracer):
|
||
|
"""A connection to a DAC."""
|
||
|
|
||
|
def __init__(self, laser_id, PL, redis):
|
||
|
self.redis = redis
|
||
|
self.laser_id = laser_id
|
||
|
self.PL = PL
|
||
|
self.pl = [[0,0,0]]
|
||
|
self.clientkey = self.redis.get("/clientkey").decode('ascii')
|
||
|
self.xyrgb = self.xyrgb_prev = (0, 0, 0, 0, 0)
|
||
|
self.intensity = 65280
|
||
|
self.intred = 100
|
||
|
self.intgreen = 100
|
||
|
self.intblue = 100
|
||
|
self.prev_x = 0
|
||
|
self.prev_y = 0
|
||
|
|
||
|
# self.newstream = OnePointIterator()
|
||
|
|
||
|
# "Laser point List" Point generator
|
||
|
# each points is yielded : Getpoints() call n times OnePoint()
|
||
|
pass
|
||
|
|
||
|
def get_points_capacity(self):
|
||
|
return 30000
|
||
|
|
||
|
# def GetPoints(self, capacity):
|
||
|
# a = [2,3]
|
||
|
# return a
|
||
|
|
||
|
def prepare(self):
|
||
|
return True
|
||
|
|
||
|
def begin(self, n, kpps):
|
||
|
return True
|
||
|
|
||
|
def get_status(self):
|
||
|
""" Return 0 if not ready (playing), 1 if ready to receive new frame,-1 if communication failed """
|
||
|
# va chercher dans le helios et renvoie la normalisée
|
||
|
status = HeliosLib.GetStatus(0)
|
||
|
if status == 0 :
|
||
|
return self.lstate["2"] # playing
|
||
|
if status == 1 :
|
||
|
return self.lstate["0"] # ready
|
||
|
if status == -1 :
|
||
|
return self.lstate["64"] # no connection
|
||
|
|
||
|
def set_status(self, status: int):
|
||
|
return
|
||
|
|
||
|
def before_loop(self):
|
||
|
return True
|
||
|
|
||
|
def write(self, points):
|
||
|
# status_attempts = 0
|
||
|
# j = 0
|
||
|
# while (status_attempts < 512 and HeliosLib.GetStatus(j) != 1):
|
||
|
# status_attempts += 1
|
||
|
# print("attempt {}".format(status_attempts))
|
||
|
# HeliosLib.WriteFrame(j, 3000, 0, ctypes.pointer(frames[i % 30]), 1000) # Send the frame
|
||
|
try :
|
||
|
points = [ *i for i in items ]
|
||
|
frames = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
|
||
|
frame_type = HeliosPoint * 1000
|
||
|
x = 0
|
||
|
y = 0
|
||
|
for i in range(30):
|
||
|
y = round(i * 0xFFF / 30)
|
||
|
frames[i] = frame_type()
|
||
|
for j in range(1000):
|
||
|
if (j < 500):
|
||
|
x = round(j * 0xFFF / 500)
|
||
|
else:
|
||
|
x = round(0xFFF - ((j - 500) * 0xFFF / 500))
|
||
|
frames[i][j] = HeliosPoint(int(x), int(y), 255, 255, 255, 255)
|
||
|
for i in range(150):
|
||
|
for j in range(numDevices):
|
||
|
statusAttempts = 0
|
||
|
# Make 512 attempts for DAC status to be ready. After that, just give up and try to write the frame anyway
|
||
|
while (statusAttempts < 512 and HeliosLib.GetStatus(j) != 1):
|
||
|
statusAttempts += 1
|
||
|
HeliosLib.WriteFrame(j, 30000, 0, ctypes.pointer(frames[i % 30]), 1000) # Send the frame
|
||
|
|
||
|
except Exception as exc :
|
||
|
print (exc)
|
||
|
|
||
|
def get_warped_point(self, x, y ):
|
||
|
|
||
|
# transform in one matrix, with warp !!
|
||
|
# Etherpoint all transform in one matrix, with warp !!
|
||
|
# position = homographyp.apply(gstt.EDH[self.laser_id], np.array([(x, y)]))
|
||
|
return x, y
|
||
|
# return position[0][0], position[0][1]
|
||
|
|
||
|
#
|
||
|
# # Create sample frames
|
||
|
# frames = [0 for x in range(30)]
|
||
|
# frameType = HeliosPoint * 1000
|
||
|
# x = 0
|
||
|
# y = 0
|
||
|
# for i in range(30):
|
||
|
# y = round(i * 0xFFF / 30)
|
||
|
# frames[i] = frameType()
|
||
|
# for j in range(1000):
|
||
|
# if (j < 500):
|
||
|
# x = round(j * 0xFFF / 500)
|
||
|
# else:
|
||
|
# x = round(0xFFF - ((j - 500) * 0xFFF / 500))
|
||
|
#
|
||
|
# frames[i][j] = HeliosPoint(int(x), int(y), 255, 255, 255, 255)
|
||
|
#
|
||
|
# # Play frames on DAC
|
||
|
# for i in range(150):
|
||
|
# for j in range(numDevices):
|
||
|
# statusAttempts = 0
|
||
|
# # Make 512 attempts for DAC status to be ready. After that, just give up and try to write the frame anyway
|
||
|
# while (statusAttempts < 512 and HeliosLib.GetStatus(j) != 1):
|
||
|
# statusAttempts += 1
|
||
|
# HeliosLib.WriteFrame(j, 30000, 0, ctypes.pointer(frames[i % 30]), 1000) # Send the frame
|
||
|
#
|
||
|
# HeliosLib.CloseDevices()
|