## tutorial from: https://essentia.upf.edu/essentia_python_examples.html ##In this tutorial, we use HPCP, ChromaCrossSimilarity and CoverSongSimilarity algorithms from essentia. import essentia.standard as estd from essentia.pytools.spectral import hpcpgram yesterday_original = 'audio/Yesterday (Remastered 2009).mp3' yesterday_cover_01 = 'audio/Yesterday - The Beatles - Connie Talbot (Cover).mp3' yesterday_cover_02 = 'audio/The Beatles - Yesterday Saxophone Cover Alexandra Ilieva Thomann.mp3' different_song = 'audio/Bella Poarch - Build a Btch (Official Music Video).mp3' # query cover song original_song = estd.MonoLoader(filename=yesterday_original, sampleRate=32000)() true_cover_01 = estd.MonoLoader(filename=yesterday_cover_01, sampleRate=32000)() true_cover_02 = estd.MonoLoader(filename=yesterday_cover_02, sampleRate=32000)() # wrong match false_cover_1 = estd.MonoLoader(filename=different_song, sampleRate=32000)() ## Now let’s compute Harmonic Pitch Class Profile (HPCP) chroma features of these audio signals. query_hpcp = hpcpgram(original_song, sampleRate=32000) true_cover_hpcp_1 = hpcpgram(true_cover_01, sampleRate=32000) true_cover_hpcp_2 = hpcpgram(true_cover_02, sampleRate=32000) false_cover_hpcp = hpcpgram(false_cover_1, sampleRate=32000) ## Next steps are done using the essentia ChromaCrossSimilarity function, ## ## Stacking input features ## ## Key invariance using Optimal Transposition Index (OTI) [3]. ## ## Compute binary chroma cross similarity using cross recurrent plot as described in [1] or using OTI-based chroma binary method as detailed in [3] crp = estd.ChromaCrossSimilarity(frameStackSize=9, frameStackStride=1, binarizePercentile=0.095, oti=True) true_pair_crp_1 = crp(query_hpcp, true_cover_hpcp_1) true_pair_crp_2 = crp(query_hpcp, true_cover_hpcp_2) ## Compute binary chroma cross similarity using cross recurrent plot of the non-cover pairs false_pair_crp = crp(query_hpcp, false_cover_hpcp) ## Alternatively, you can also use the OTI-based binary similarity method as explained in [2] to compute the cross similarity of two given chroma features. csm = estd.ChromaCrossSimilarity(frameStackSize=9, frameStackStride=1, binarizePercentile=0.095, oti=True, otiBinary=True) oti_csm = csm(query_hpcp, false_cover_hpcp) ## Finally, we compute an asymmetric cover song similarity measure from the pre-computed binary cross simialrity matrix of cover/non-cover pairs using various contraints of smith-waterman sequence alignment algorithm (eg. serra09 or chen17). ## ## Computing cover song similarity distance between ‘Yesterday - accapella cover’ and ‘Yesterday - The Beatles’ score_matrix, distance = estd.CoverSongSimilarity(disOnset=0.5, disExtension=0.5, alignmentType='serra09', distanceType='asymmetric')(true_pair_crp_1) print('Cover song similarity distance: %s' % distance) ## other similar score_matrix, distance = estd.CoverSongSimilarity(disOnset=0.5, disExtension=0.5, alignmentType='serra09', distanceType='asymmetric')(true_pair_crp_2) print('Cover song similarity distance: %s' % distance) ## Computing cover song similarity distance between Yesterday - accapella cover and Come Together cover - The Aerosmith. score_matrix, distance = estd.CoverSongSimilarity(disOnset=0.5, disExtension=0.5, alignmentType='serra09', distanceType='asymmetric')(false_pair_crp) print('Cover song similarity distance: %s' % distance)