Compare commits
8 Commits
6048fef636
...
0b78c404d3
Author | SHA1 | Date | |
---|---|---|---|
|
0b78c404d3 | ||
|
23502290e4 | ||
|
33925bbe3c | ||
|
3c4d7b7299 | ||
|
76a85a75c8 | ||
|
4671056cdc | ||
|
dfbc7e9600 | ||
|
ea925614e4 |
Binary file not shown.
Binary file not shown.
@ -18,25 +18,19 @@ import essentia.standard as estd
|
|||||||
from essentia.pytools.spectral import hpcpgram
|
from essentia.pytools.spectral import hpcpgram
|
||||||
|
|
||||||
import IPython
|
import IPython
|
||||||
#IPython.display.Audio('./en_vogue+Funky_Divas+09-Yesterday.mp3')
|
|
||||||
#IPython.display.Audio('./beatles+1+11-Yesterday.mp3')
|
|
||||||
#IPython.display.Audio('./aerosmith+Live_Bootleg+06-Come_Together.mp3')
|
|
||||||
|
|
||||||
yesterday_original = 'audio/Yesterday (Remastered 2009).mp3'
|
yesterday_original = 'audio/Yesterday (Remastered 2009).mp3'
|
||||||
yesterday_cover_01 = 'audio/Yesterday - The Beatles - Connie Talbot (Cover).mp3'
|
yesterday_cover_01 = 'audio/Yesterday - The Beatles - Connie Talbot (Cover).mp3'
|
||||||
yesterday_cover_02 = 'audio/The Beatles - Yesterday Saxophone Cover Alexandra Ilieva Thomann.mp3'
|
different_song = 'audio/Jacques Brel - Ne Me Quitte Pas.mp3'
|
||||||
different_song = 'audio/Bella Poarch - Build a Btch (Official Music Video).mp3'
|
|
||||||
|
|
||||||
IPython.display.Audio(yesterday_original)
|
IPython.display.Audio(yesterday_original)
|
||||||
IPython.display.Audio(yesterday_cover_01)
|
IPython.display.Audio(yesterday_cover_01)
|
||||||
IPython.display.Audio(yesterday_cover_02)
|
|
||||||
IPython.display.Audio(different_song)
|
IPython.display.Audio(different_song)
|
||||||
|
|
||||||
# query cover song
|
# query cover song
|
||||||
original_song = estd.MonoLoader(filename=yesterday_original, sampleRate=32000)()
|
original_song = estd.MonoLoader(filename=yesterday_original, sampleRate=32000)()
|
||||||
|
|
||||||
true_cover_01 = estd.MonoLoader(filename=yesterday_cover_01, sampleRate=32000)()
|
true_cover_01 = estd.MonoLoader(filename=yesterday_cover_01, sampleRate=32000)()
|
||||||
true_cover_02 = estd.MonoLoader(filename=yesterday_cover_02, sampleRate=32000)()
|
|
||||||
|
|
||||||
# wrong match
|
# wrong match
|
||||||
false_cover_1 = estd.MonoLoader(filename=different_song, sampleRate=32000)()
|
false_cover_1 = estd.MonoLoader(filename=different_song, sampleRate=32000)()
|
||||||
@ -46,7 +40,6 @@ false_cover_1 = estd.MonoLoader(filename=different_song, sampleRate=32000)()
|
|||||||
query_hpcp = hpcpgram(original_song, sampleRate=32000)
|
query_hpcp = hpcpgram(original_song, sampleRate=32000)
|
||||||
|
|
||||||
true_cover_hpcp_1 = hpcpgram(true_cover_01, sampleRate=32000)
|
true_cover_hpcp_1 = hpcpgram(true_cover_01, sampleRate=32000)
|
||||||
true_cover_hpcp_2 = hpcpgram(true_cover_02, sampleRate=32000)
|
|
||||||
|
|
||||||
false_cover_hpcp = hpcpgram(false_cover_1, sampleRate=32000)
|
false_cover_hpcp = hpcpgram(false_cover_1, sampleRate=32000)
|
||||||
|
|
||||||
@ -84,15 +77,6 @@ plt.ylabel('Yesterday - The Beatles')
|
|||||||
plt.imshow(true_pair_crp_1, origin='lower')
|
plt.imshow(true_pair_crp_1, origin='lower')
|
||||||
|
|
||||||
|
|
||||||
true_pair_crp_2 = crp(query_hpcp, true_cover_hpcp_2)
|
|
||||||
|
|
||||||
fig = plt.gcf()
|
|
||||||
fig.set_size_inches(15.5, 5.5)
|
|
||||||
|
|
||||||
plt.title('Cross recurrent plot [1]')
|
|
||||||
plt.xlabel('Yesterday accapella cover')
|
|
||||||
plt.ylabel('Yesterday - The Beatles')
|
|
||||||
plt.imshow(true_pair_crp_2, origin='lower')
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
@ -154,23 +138,6 @@ plt.imshow(score_matrix, origin='lower')
|
|||||||
|
|
||||||
print('Cover song similarity distance: %s' % distance)
|
print('Cover song similarity distance: %s' % distance)
|
||||||
|
|
||||||
## other similar
|
|
||||||
|
|
||||||
score_matrix, distance = estd.CoverSongSimilarity(disOnset=0.5,
|
|
||||||
disExtension=0.5,
|
|
||||||
alignmentType='serra09',
|
|
||||||
distanceType='asymmetric')(true_pair_crp_2)
|
|
||||||
|
|
||||||
fig = plt.gcf()
|
|
||||||
fig.set_size_inches(15.5, 5.5)
|
|
||||||
|
|
||||||
plt.title('Cover song similarity distance: %s' % distance)
|
|
||||||
plt.xlabel('Yesterday accapella cover')
|
|
||||||
plt.ylabel('Yesterday - The Beatles')
|
|
||||||
plt.imshow(score_matrix, origin='lower')
|
|
||||||
|
|
||||||
print('Cover song similarity distance: %s' % distance)
|
|
||||||
|
|
||||||
## Computing cover song similarity distance between Yesterday - accapella cover and Come Together cover - The Aerosmith.
|
## Computing cover song similarity distance between Yesterday - accapella cover and Come Together cover - The Aerosmith.
|
||||||
|
|
||||||
score_matrix, distance = estd.CoverSongSimilarity(disOnset=0.5,
|
score_matrix, distance = estd.CoverSongSimilarity(disOnset=0.5,
|
||||||
|
@ -10,9 +10,10 @@ from essentia.pytools.spectral import hpcpgram
|
|||||||
|
|
||||||
yesterday_original = 'audio/Yesterday (Remastered 2009).mp3'
|
yesterday_original = 'audio/Yesterday (Remastered 2009).mp3'
|
||||||
yesterday_cover_01 = 'audio/Yesterday - The Beatles - Connie Talbot (Cover).mp3'
|
yesterday_cover_01 = 'audio/Yesterday - The Beatles - Connie Talbot (Cover).mp3'
|
||||||
wrong_song = 'audio/Bella Poarch - Build a Btch (Official Music Video).mp3'
|
wrong_song = 'audio/Jacques Brel - Ne Me Quitte Pas.mp3'
|
||||||
|
|
||||||
song_reference = yesterday_original
|
song_reference = yesterday_original # the original song analysed in normal mode
|
||||||
|
song_streaming = wrong_song # the song get in stream mode to compare to reference
|
||||||
|
|
||||||
# query cover song
|
# query cover song
|
||||||
original_song = estd.MonoLoader(filename=song_reference, sampleRate=32000)()
|
original_song = estd.MonoLoader(filename=song_reference, sampleRate=32000)()
|
||||||
@ -27,11 +28,10 @@ true_cover_hpcp = hpcpgram(original_song, sampleRate=32000)
|
|||||||
import essentia.streaming as estr
|
import essentia.streaming as estr
|
||||||
from essentia import array, run, Pool
|
from essentia import array, run, Pool
|
||||||
|
|
||||||
query_filename = wrong_song
|
|
||||||
|
|
||||||
# Let's instantiate all the required essentia streaming algorithms
|
# Let's instantiate all the required essentia streaming algorithms
|
||||||
|
|
||||||
audio = estr.MonoLoader(filename=query_filename, sampleRate=32000)
|
audio = estr.MonoLoader(filename=song_streaming, sampleRate=32000)
|
||||||
|
|
||||||
frame_cutter = estr.FrameCutter(frameSize=4096, hopSize=2048)
|
frame_cutter = estr.FrameCutter(frameSize=4096, hopSize=2048)
|
||||||
|
|
||||||
|
2
rm_mp3.sh
Normal file
2
rm_mp3.sh
Normal file
@ -0,0 +1,2 @@
|
|||||||
|
git filter-branch --force --index-filter 'git rm --cached --ignore-unmatch "*.mp3"' --prune-empty --tag-name-filter cat -- --all
|
||||||
|
|
2
todo
2
todo
@ -48,7 +48,7 @@ Ce qu'il reste a faire:
|
|||||||
* avoir un input type micro
|
* avoir un input type micro
|
||||||
* avoir une entree avec jack (jackd)
|
* avoir une entree avec jack (jackd)
|
||||||
* Faire tourner plusieur processus pour pouvoir annalyser plusieurs track en meme temps.
|
* Faire tourner plusieur processus pour pouvoir annalyser plusieurs track en meme temps.
|
||||||
*
|
* ET VOILA CA DEVRAIT ETRE BON =)
|
||||||
|
|
||||||
1) un scritp qui telecharge les son:
|
1) un scritp qui telecharge les son:
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user