Compare commits
2 Commits
299e767d98
...
4f42ee4560
Author | SHA1 | Date | |
---|---|---|---|
|
4f42ee4560 | ||
|
b0bf1edd7c |
81
cover_song_simplified.py
Normal file
81
cover_song_simplified.py
Normal file
@ -0,0 +1,81 @@
|
||||
## tutorial from: https://essentia.upf.edu/essentia_python_examples.html
|
||||
##In this tutorial, we use HPCP, ChromaCrossSimilarity and CoverSongSimilarity algorithms from essentia.
|
||||
|
||||
import essentia.standard as estd
|
||||
from essentia.pytools.spectral import hpcpgram
|
||||
|
||||
yesterday_original = 'audio/Yesterday (Remastered 2009).mp3'
|
||||
yesterday_cover_01 = 'audio/Yesterday - The Beatles - Connie Talbot (Cover).mp3'
|
||||
yesterday_cover_02 = 'audio/The Beatles - Yesterday Saxophone Cover Alexandra Ilieva Thomann.mp3'
|
||||
different_song = 'audio/Bella Poarch - Build a Btch (Official Music Video).mp3'
|
||||
|
||||
# query cover song
|
||||
original_song = estd.MonoLoader(filename=yesterday_original, sampleRate=32000)()
|
||||
true_cover_01 = estd.MonoLoader(filename=yesterday_cover_01, sampleRate=32000)()
|
||||
true_cover_02 = estd.MonoLoader(filename=yesterday_cover_02, sampleRate=32000)()
|
||||
|
||||
# wrong match
|
||||
false_cover_1 = estd.MonoLoader(filename=different_song, sampleRate=32000)()
|
||||
|
||||
## Now let’s compute Harmonic Pitch Class Profile (HPCP) chroma features of these audio signals.
|
||||
query_hpcp = hpcpgram(original_song, sampleRate=32000)
|
||||
true_cover_hpcp_1 = hpcpgram(true_cover_01, sampleRate=32000)
|
||||
true_cover_hpcp_2 = hpcpgram(true_cover_02, sampleRate=32000)
|
||||
false_cover_hpcp = hpcpgram(false_cover_1, sampleRate=32000)
|
||||
|
||||
## Next steps are done using the essentia ChromaCrossSimilarity function,
|
||||
##
|
||||
## Stacking input features
|
||||
##
|
||||
## Key invariance using Optimal Transposition Index (OTI) [3].
|
||||
##
|
||||
## Compute binary chroma cross similarity using cross recurrent plot as described in [1] or using OTI-based chroma binary method as detailed in [3]
|
||||
|
||||
crp = estd.ChromaCrossSimilarity(frameStackSize=9,
|
||||
frameStackStride=1,
|
||||
binarizePercentile=0.095,
|
||||
oti=True)
|
||||
|
||||
true_pair_crp_1 = crp(query_hpcp, true_cover_hpcp_1)
|
||||
true_pair_crp_2 = crp(query_hpcp, true_cover_hpcp_2)
|
||||
|
||||
## Compute binary chroma cross similarity using cross recurrent plot of the non-cover pairs
|
||||
|
||||
false_pair_crp = crp(query_hpcp, false_cover_hpcp)
|
||||
|
||||
## Alternatively, you can also use the OTI-based binary similarity method as explained in [2] to compute the cross similarity of two given chroma features.
|
||||
|
||||
csm = estd.ChromaCrossSimilarity(frameStackSize=9,
|
||||
frameStackStride=1,
|
||||
binarizePercentile=0.095,
|
||||
oti=True,
|
||||
otiBinary=True)
|
||||
|
||||
oti_csm = csm(query_hpcp, false_cover_hpcp)
|
||||
|
||||
|
||||
## Finally, we compute an asymmetric cover song similarity measure from the pre-computed binary cross simialrity matrix of cover/non-cover pairs using various contraints of smith-waterman sequence alignment algorithm (eg. serra09 or chen17).
|
||||
##
|
||||
## Computing cover song similarity distance between ‘Yesterday - accapella cover’ and ‘Yesterday - The Beatles’
|
||||
|
||||
score_matrix, distance = estd.CoverSongSimilarity(disOnset=0.5,
|
||||
disExtension=0.5,
|
||||
alignmentType='serra09',
|
||||
distanceType='asymmetric')(true_pair_crp_1)
|
||||
print('Cover song similarity distance: %s' % distance)
|
||||
|
||||
## other similar
|
||||
|
||||
score_matrix, distance = estd.CoverSongSimilarity(disOnset=0.5,
|
||||
disExtension=0.5,
|
||||
alignmentType='serra09',
|
||||
distanceType='asymmetric')(true_pair_crp_2)
|
||||
print('Cover song similarity distance: %s' % distance)
|
||||
|
||||
## Computing cover song similarity distance between Yesterday - accapella cover and Come Together cover - The Aerosmith.
|
||||
|
||||
score_matrix, distance = estd.CoverSongSimilarity(disOnset=0.5,
|
||||
disExtension=0.5,
|
||||
alignmentType='serra09',
|
||||
distanceType='asymmetric')(false_pair_crp)
|
||||
print('Cover song similarity distance: %s' % distance)
|
7
todo
7
todo
@ -29,3 +29,10 @@ Python exemple:
|
||||
|
||||
Bon la j'ai choper un exemple qui marche en mode standar.
|
||||
Il faudrait que je refasse le meme truc en mode streaming.
|
||||
|
||||
Pour ca il faudrait:
|
||||
* une version simplifier du code en question (sans les plt et autre affichage)
|
||||
* comprendre un peu la logique du streaming avec essentia
|
||||
* refaire l'exemple em mode streaming
|
||||
|
||||
?? Est-ce que ca va etre rapide a s'executer ??
|
||||
|
Loading…
Reference in New Issue
Block a user