lj_qualibration/src/qualibration/annalyse.rs

1628 lines
50 KiB
Rust

use std::cmp::Ordering;
use std::collections::HashSet;
use std::f64::consts::PI;
use super::Param;
use super::DEBUG;
use crate::utils::Pt;
//use opencv::prelude::MatTraitConst;
use opencv::prelude::*; //MatTraitConst;
use opencv::core::{add, subtract, Mat, Point as OcvPoint, Point3_, VecN, CV_8UC3};
use opencv::highgui::{self, create_trackbar, named_window, WINDOW_AUTOSIZE};
use opencv::imgproc::{cvt_color, line, COLOR_BGR2GRAY};
use opencv::Result;
#[derive(Clone, Copy)]
enum Cnt {
Beg(usize),
End(usize),
}
opencv::opencv_branch_4! {
use opencv::imgproc::LINE_AA;
}
opencv::not_opencv_branch_4! {
use opencv::core::LINE_AA;
}
use super::param::Treshold;
const MAX_TRACKBAR: i32 = 255;
#[allow(dead_code)]
pub fn draw_histograme_dbg(
window_name: &str,
histo: &Vec<f64>,
(from, to): (usize, usize),
) -> Result<()> {
let v: VecN<f64, 4> = VecN::new(0., 0., 0., 255.);
let c1: VecN<f64, 4> = VecN::new(128., 128., 128., 255.);
let c2: VecN<f64, 4> = VecN::new(255., 255., 255., 255.);
//let color: VecN<f64, 4> = VecN::new(255., 255., 255., 255.);
let mut img = Mat::new_rows_cols_with_default(256 * 2, 256 * 2, CV_8UC3, v)?;
let mut max = 0.;
for i in 0..256 {
if histo[i] > max {
max = histo[i];
}
}
let v_log = 10.;
for i in 0..255 {
let x1 = ((i + 0) * 2) as i32;
let x2 = ((i + 1) * 2) as i32;
let y1 =
((histo[i + 0] as f64 + 1.).log(v_log) / (max as f64).log(v_log) * 2. * 256.) as i32;
let y2 =
((histo[i + 1] as f64 + 1.).log(v_log) / (max as f64).log(v_log) * 2. * 256.) as i32;
let color = if i >= from && i <= to { c2 } else { c1 };
let pt1 = OcvPoint::new(x1, y1);
let pt2 = OcvPoint::new(x2, y2);
line(&mut img, pt1, pt2, color, 1, LINE_AA, 0)?;
}
highgui::imshow(window_name, &img)?;
Ok(())
}
#[allow(dead_code)]
pub fn draw_histograme_log(window_name: &str, histo: &Vec<f64>, is_log: bool) -> Result<()> {
let v: VecN<f64, 4> = VecN::new(0., 0., 0., 255.);
let color: VecN<f64, 4> = VecN::new(210., 210., 255., 255.);
let mut img = Mat::new_rows_cols_with_default(
histo.len() as i32 * 2,
histo.len() as i32 * 2,
CV_8UC3,
v,
)?;
let mut max = f64::MIN;
for i in 0..histo.len() {
if histo[i] > max {
max = histo[i];
}
}
for i in 0..(histo.len() - 1) {
let x1 = ((i + 0) * 2) as i32;
let x2 = ((i + 1) * 2) as i32;
let (y1, y2);
if is_log {
y1 = ((1.-((histo[i + 0] as f64 + 1.).log10() / (max as f64).log10())) * 512.) as i32;
y2 = ((1.-((histo[i + 1] as f64 + 1.).log10() / (max as f64).log10())) * 512.) as i32;
} else {
y1 = ((1. - ((histo[i + 0] as f64) / (max as f64))) * 512.) as i32;
y2 = ((1. - ((histo[i + 1] as f64) / (max as f64))) * 512.) as i32;
}
let pt1 = OcvPoint::new(x1, y1);
let pt2 = OcvPoint::new(x2, y2);
line(&mut img, pt1, pt2, color, 1, LINE_AA, 0)?;
}
highgui::imshow(window_name, &img)?;
Ok(())
}
#[allow(dead_code)]
pub fn draw_histograme(window_name: &str, histo: &Vec<f64>) -> Result<()> {
let v: VecN<f64, 4> = VecN::new(0., 0., 0., 255.);
let color: VecN<f64, 4> = VecN::new(255., 255., 255., 255.);
let mut img = Mat::new_rows_cols_with_default(
histo.len() as i32 * 2,
histo.len() as i32 * 2,
CV_8UC3,
v,
)?;
let mut max = 0.;
for i in 0..(histo.len() - 1) {
if histo[i] > max {
max = histo[i];
}
}
let v_log = 10.;
for i in 0..(histo.len() - 1) {
let x1 = ((i + 0) * 2) as i32;
let x2 = ((i + 1) * 2) as i32;
let y1 = ((histo[i + 0] as f64 + 1.).log(v_log) / (max as f64).log(v_log)
* 2.
* histo.len() as f64) as i32;
let y2 = ((histo[i + 1] as f64 + 1.).log(v_log) / (max as f64).log(v_log)
* 2.
* histo.len() as f64) as i32;
let pt1 = OcvPoint::new(x1, y1);
let pt2 = OcvPoint::new(x2, y2);
line(&mut img, pt1, pt2, color, 1, LINE_AA, 0)?;
}
highgui::imshow(window_name, &img)?;
Ok(())
}
#[allow(dead_code)]
pub fn draw_histograme_bgr(window_name: &str, histo: &Vec<Vec<f64>>) -> Result<()> {
let v: VecN<f64, 4> = VecN::new(0., 0., 0., 255.);
let b: VecN<f64, 4> = VecN::new(255., 0., 0., 255.);
let g: VecN<f64, 4> = VecN::new(0., 255., 0., 255.);
let r: VecN<f64, 4> = VecN::new(0., 0., 255., 255.);
let color = vec![b, g, r];
let mut img = Mat::new_rows_cols_with_default(256 * 2, 256 * 2, CV_8UC3, v)?;
let mut range = vec![vec![f64::MAX, f64::MIN]; 3];
for j in 0..3 {
for i in 0..256 {
if histo[j][i] > range[j][1] {
range[j][1] = histo[j][i];
}
if histo[j][i] < range[j][0] {
range[j][0] = histo[j][i];
}
}
}
//let v_log = 10.;
for j in 0..3 {
for i in 0..255 {
let x1 = ((i + 0) * 2) as i32;
let x2 = ((i + 1) * 2) as i32;
let y1 = ((histo[j][i + 0] + 1.).log10() / range[j][1].log10() * 2. * 256.) as i32;
let y2 = ((histo[j][i + 1] + 1.).log10() / range[j][1].log10() * 2. * 256.) as i32;
let pt1 = OcvPoint::new(x1, y1);
let pt2 = OcvPoint::new(x2, y2);
line(&mut img, pt1, pt2, color[j], 1, LINE_AA, 0)?;
}
}
highgui::imshow(window_name, &img)?;
Ok(())
}
pub fn draw_histograme_bgr_tresh(
window_name: &str,
histo: &Vec<Vec<f64>>,
tresh: &Treshold,
) -> Result<()> {
let v: VecN<f64, 4> = VecN::new(0., 0., 0., 255.);
let b: VecN<f64, 4> = VecN::new(255., 0., 0., 255.);
let g: VecN<f64, 4> = VecN::new(0., 255., 0., 255.);
let r: VecN<f64, 4> = VecN::new(0., 0., 255., 255.);
let color1 = vec![b, g, r];
let color2 = vec![b / 2., g / 2., r / 2.];
let mut img = Mat::new_rows_cols_with_default(256 * 2, 256 * 2, CV_8UC3, v)?;
let mut vmax = vec![f64::MIN; 3];
for j in 0..histo.len() {
for i in 0..histo[j].len() {
if histo[j][i] > vmax[j] {
vmax[j] = histo[j][i];
}
}
}
//let v_log = 10.;
let max: Vec<f64> = [tresh.max_0 as f64, tresh.max_1 as f64, tresh.max_2 as f64].into();
let min: Vec<f64> = [tresh.min_0 as f64, tresh.min_1 as f64, tresh.min_2 as f64].into();
//println!("min: {min:?}\tmax: {max:?}");
for j in 0..3 {
for i in 0..255 {
let x1 = ((i + 0) * 2) as i32;
let x2 = ((i + 1) * 2) as i32;
let y1 = ((histo[j][i + 0] + 1.).log10() / vmax[j].log10() * 2. * 256.) as i32;
let y2 = ((histo[j][i + 1] + 1.).log10() / vmax[j].log10() * 2. * 256.) as i32;
let pt1 = OcvPoint::new(x1, y1);
let pt2 = OcvPoint::new(x2, y2);
//let val = (histo[j][i] + 1.).log10() / max[j].log10();
let (color, thickness) = if i as f64 >= min[j] && i as f64 <= max[j] {
(color1[j], 2)
} else {
(color2[j], 1)
};
line(&mut img, pt1, pt2, color, thickness, LINE_AA, 0)?;
}
}
highgui::imshow(window_name, &img)?;
Ok(())
}
// limit = 0.35 c'est bien
#[allow(dead_code)]
pub fn is_same_frame(frame: &Mat, frame_prev: &Mat) -> Result<bool> {
let nb_liss: i32 = 50; // plus on lisse la courbe plus on attein la limite facilement
let limit = 0.45; // plus c'est haut, plus on tolere de changement entre 2 image
let d_bgr = image_diff(frame, frame_prev)?;
let histo = histogram_1d(&d_bgr, nb_liss)?;
let ((_id1, v1), (_id2, v2)) = first_invert(&histo);
if DEBUG {
// on affiche l'image de la cam
highgui::imshow("cam image", frame)?;
// on affiche l'image de la cam
highgui::imshow("prev image", frame_prev)?;
// on affiche la difference
highgui::imshow("diff image", &d_bgr)?;
// on affiche l'histograme
let ids = ((128 - _id2), (128 + _id1));
draw_histograme_dbg("histograme", &histo, ids)?;
// -- pour chaque image enregistrer on l'affiche ma ca se fait autre part
}
if DEBUG {
println!("v1[{_id1}]:{v1}\tv2[{_id1}:{v2}");
}
if v1 >= limit || v2 >= limit {
println!("\t XXX DIFFERENT XXX");
Ok(false)
} else {
println!("\t :) Same (: ");
Ok(true)
}
}
// On cherche des segment regourper par ilot de point. chaque illot a une plage de valeur en y qui
// lui est propre, aucun autre ilot aura des point dans une plage de valeurs d'un autre illot.
pub fn get_horizontal_segment(m: &Mat) -> Result<Vec<(((f32, f32), (f32, f32)), f32)>> {
// on va faire un histogram des point selon leur position en y
// ca permetera des les differencier
// on fait cette histo gramme pour connaitre ces plage de valeur en y
let mut seg_pt = HashSet::from([]);
let (cols, rows) = (m.cols(), m.rows());
let mut histo_x = vec![0.; cols.max(rows) as usize];
for j in 0..rows {
for i in 0..cols {
let v: &Point3_<u8> = m.at_2d(j, i)?;
if v.x != 0 && v.y != 0 && v.z != 0 {
seg_pt.insert((i, j));
histo_x[i as usize] += 1.;
}
}
}
// on determine le debut et la fin de ces plage de valeur en x
let mut histo_limit = vec![];
for i in (0..(histo_x.len() - 1)).rev() {
if histo_x[i] != 0. && histo_x[i + 1] == 0. {
histo_limit.push(Cnt::End(i));
}
if histo_x[i] == 0. && histo_x[i + 1] != 0. {
histo_limit.push(Cnt::Beg(i + 1));
}
}
let mut limits = vec![];
for k in 0..(histo_limit.len() / 2) {
if let (Cnt::Beg(a), Cnt::End(b)) = (histo_limit[2 * k + 1], histo_limit[2 * k]) {
limits.push((a, b));
}
}
// on regroupe les point par illot.
let mut segment_iland = vec![vec![]; limits.len()];
for (x, y) in seg_pt {
let id = get_id_groups(&limits, x as usize).unwrap();
segment_iland[id].push((x, y));
}
// on transforme chaque point en pt: (f32, f32) -> Pt
// toujours avec la meme structure d'ilot.
let segment_iland_pt: Vec<Vec<Pt>> = segment_iland
.iter()
.map(|iland| {
iland
.iter()
.map(|(x, y)| Pt {
x: *x as f64,
y: *y as f64,
})
.collect()
})
.collect();
let mut segments = vec![];
for (_i, iland) in segment_iland_pt.iter().enumerate() {
let mut center = Pt { x: 0., y: 0. };
for p in iland {
center += *p;
}
center /= iland.len() as f64;
let max_deg = 360;
let (mut rad_min, mut y_min) = (0., f64::MAX);
let mut iland_min = vec![];
for deg in 0..max_deg {
let rad = (deg as f64) / (max_deg as f64) * PI * 2.;
let y_axis = Pt {
x: rad.sin(),
y: rad.cos(),
};
let x_axis = Pt {
x: -y_axis.y,
y: y_axis.x,
};
let mut tmp_iland = vec![];
let mut y_abs_max = f64::MIN;
for pt in iland {
let mut p = *pt - center;
p = Pt {
x: p.cross(&x_axis),
y: p.cross(&y_axis),
};
tmp_iland.push(p);
if y_abs_max < p.y.abs() {
y_abs_max = p.y.abs();
}
}
if y_abs_max < y_min {
y_min = y_abs_max;
rad_min = rad;
iland_min = tmp_iland;
}
}
iland_min.sort_by(|pta, ptb| {
if pta.y < ptb.y {
std::cmp::Ordering::Greater
} else if pta.y == ptb.y {
if pta.x.abs() < ptb.x.abs() {
std::cmp::Ordering::Greater
} else if pta.x.abs() == ptb.x.abs() {
std::cmp::Ordering::Equal
} else {
std::cmp::Ordering::Less
}
} else {
std::cmp::Ordering::Less
}
});
let id1 = iland_min.len() / 2;
let id2 = iland_min.len() - id1;
let mean_r = Pt::mean(&iland_min[..id1]);
let mean_l = Pt::mean(&iland_min[id2..]);
//let mean_r = iland_min[0];
//let mean_l = iland_min.last().unwrap();
let y_axis = Pt {
x: rad_min.sin(),
y: rad_min.cos(),
};
let x_axis = Pt {
x: -y_axis.y,
y: y_axis.x,
};
let pt_r = center + (y_axis * mean_r.y) + (x_axis * mean_r.x);
let pt_l = center + (y_axis * mean_l.y) + (x_axis * mean_l.x);
//segments.push(((pt_l.x as f32, pt_l.y as f32), (pt_r.x as f32, pt_r.y as f32)));
let pt_r_2 = pt_l + (pt_r - pt_l) * 1.5;
let pt_l_2 = pt_r + (pt_l - pt_r) * 1.5;
segments.push((
(
((pt_l_2.x as f32, pt_l_2.y as f32)),
((pt_r_2.x as f32, pt_r_2.y as f32)),
),
y_min as f32,
));
}
Ok(segments)
}
#[derive(Debug)]
struct Line {
h_lst: HashSet<(i32, i32)>,
v_lst: Vec<Pt>,
line: Vec<Pt>,
nb_liss: i32,
}
impl Line {
pub fn new(
pt_all: &mut HashSet<(i32, i32)>,
y_ordering: bool,
beg_lowest: bool,
nb_liss: i32,
) -> Self {
let mut illand = Line {
h_lst: HashSet::new(),
v_lst: vec![],
line: vec![],
nb_liss,
};
if pt_all.len() <= 0 {
return illand;
}
//dbg!(&pt_all);
illand.populate_hlst(pt_all);
illand.define_line();
//println!("");
//illand.define_beg_end(false, beg_lowest);
//dbg!(&illand);
illand
}
//fn define_beg_end(&mut self, y_ordering: bool, beg_lowest: bool) {
// // on a tout les point ordonner
// // on peut les re-ordonner selon un axes interne
//}
fn define_line(&mut self) {
// la ca va etre marant.
//
let mut last_id = 0;
let to_look = [
(-1, -1),
(0, -1),
(1, -1),
(1, 0),
(1, 1),
(0, 1),
(-1, 1),
(-1, 0),
];
if self.h_lst.len() == 0 {
return;
}
// search botom-left point.
let mut first = (i32::MAX / 2, 0);
self.h_lst.iter().for_each(|(x, y)| {
if *y > first.1 || (*y == first.1 && *x < first.0) {
first = (*x, *y);
}
});
println!("\nfirst: {first:?}\n");
let mut ll = self.h_lst.clone();
let mut l = vec![first];
let (mut px, mut py) = first;
ll.remove(&first);
// adding all borders point to a line
'line: loop {
for k in 0..to_look.len() {
//let id = (k + last_id) % to_look.len();
let (i, j) = to_look[(k + last_id) % to_look.len()];
if ll.get(&(i + px, j + py)).is_some() {
l.push((i + px, j + py));
ll.remove(&(i + px, j + py));
(px, py) = (i + px, j + py);
last_id = (k + last_id + to_look.len() - 2) % to_look.len();
continue 'line;
}
}
break;
}
let (mut min_y, mut max_y) = (f64::MAX, f64::MIN);
let mut l_tmp: Vec<Pt> = l
.iter()
.map(|(x, y)| {
min_y = (*y as f64).min(min_y);
max_y = (*y as f64).max(max_y);
Pt {
x: *x as f64,
y: *y as f64,
}
})
.collect();
// lissage des point
let raw_pt = l_tmp.clone();
//println!("[1]raw_pt:{:?}", &raw_pt);
let nb_liss = self.nb_liss * 2;
let (c1, c2) = (1., 48.);
for i in 0..nb_liss {
let mut nl = vec![];
for i in 0..l_tmp.len() {
let (id_prev, id_next) =
((i + l_tmp.len() - 1) % l_tmp.len(), (i + 1) % l_tmp.len());
let (prev, pt, next) = (l_tmp[id_prev], l_tmp[i], l_tmp[id_next]);
nl.push((prev * c1 + pt * c2 + next * c1) / (2. * c1 + c2));
}
l_tmp = nl;
}
let mut histo_ang = vec![0.; 256];
let mut length_max = 0.;
for i in 0..l_tmp.len() {
let next = l_tmp[(i + 1) % l_tmp.len()];
let diff = next - l_tmp[i];
let ang = diff.y.atan2(diff.x);
let id = ((((ang + PI) / (2. * PI)) * 255.) as usize) % 256;
let length = (diff.x * diff.x + diff.y * diff.y).sqrt();
length_max = length.max(length_max);
histo_ang[id] += 1.;
}
let _ = draw_histograme_log("histo ang", &histo_ang, false);
let mut histo_ang_diff = vec![0.; 256];
let mirange = 3;
let mut id_out = vec![0];
for i in 0..l_tmp.len() {
let next = l_tmp[(i + 1) % l_tmp.len()];
let next2 = l_tmp[(i + 2) % l_tmp.len()];
let diff1 = next - l_tmp[i];
let diff2 = next2 - next;
let ang1 = diff1.y.atan2(diff1.x);
let ang2 = diff2.y.atan2(diff2.x);
let id = (((((ang2 - ang1) + PI) / (2. * PI)) * 255.) as usize) % 256;
if !(id >= 128 - mirange && id <= 128 + mirange) {
id_out.push(i);
//println!("id:{i}");
}
histo_ang_diff[id] += 1.;
}
let _ = draw_histograme_log("histo ang diff", &histo_ang_diff, true);
//let mut histo_lenght = vec![0.; 256];
//for i in 0..l_tmp.len() {
// let next = l_tmp[(i + 1) % l_tmp.len()];
// let diff = next - l_tmp[i];
// //let ang = diff.y.atan2(diff.x);
// //let ang_id = ((ang / (2. * PI) * 256.) as usize) % 256;
// let length = (diff.x * diff.x + diff.y * diff.y).sqrt();
// let id = (length / length_max * 255.) as usize % 256;
// histo_lenght[id] += 1.;
//}
// draw histo ang
// draw histo dst
//let _ = draw_histograme_log("histo length", &histo_lenght, false);
// opposite side
// Le but c'est de trouver le point le plus proche mais pas un point voisin
// On va le dessiner pour une partie des point seulement
let mut diff = vec![];
for i in 0..id_out.len()-1 {
let d = id_out[i+1] - id_out[i];
diff.push((d, id_out[i], id_out[i+1]));
}
diff.sort_by(|a, b| {
match (a.0, b.0) {
(a, b) if a < b => Ordering::Greater,
(a, b) if a == b => Ordering::Equal,
_ => Ordering::Less,
}
});
if diff.len() < 2 {
return ;
}
let mut dio = vec![diff[0], diff[1]];
dio.sort_by(|a, b| {
match (a.1, b.1) {
(a, b) if a > b => Ordering::Greater,
(a, b) if a == b => Ordering::Equal,
_ => Ordering::Less,
}
});
//dbg!("diff:", &diff[..3]);
//dbg!(&id_out);
dbg!(&dio);
//*
////println!("[2]raw_pt:{:?}", &raw_pt);
//let left: Vec<Pt> = raw_pt[dio[0].1..=dio[0].2].into();
//let mut right = vec![];
//for i in (dio[1].1..=dio[1].2).rev() {
////for i in (id_out[1]..=id_out[2]).rev() {
// right.push(raw_pt[i]);
//}
//println!("[2]raw_pt:{:?}", &raw_pt);
let left: Vec<Pt> = l_tmp[dio[0].1..=dio[0].2].into();
let mut right = vec![];
for i in (dio[1].1..=dio[1].2).rev() {
//for i in (id_out[1]..=id_out[2]).rev() {
right.push(l_tmp[i]);
}
let mut couple = vec!();
let nb_jump = 10;
let mut id_last = 0;
let range_id = 20;
for i in 0..left.len() {
//if i % nb_jump == 0 {
let mut dist = vec![];
let from = (id_last as i32 - range_id as i32).max(0) as usize;
let to = (id_last + range_id).min(right.len()-1);
for id in from..=to {
let df = right[id] - left[i];
let dst = (df.cross(&df)).sqrt();
dist.push((id, dst));
}
dist.sort_by(|a, b| {
if a.1 > b.1 {
Ordering::Greater
} else if a.1 == b.1 {
Ordering::Equal
} else {
Ordering::Less
}
});
//println!("closest: {:?}", &dist[0]);
id_last = dist[0].0; //dbg!(dist);
couple.push((left[i], right[id_last]));
//}
}
let l3: Vec<Pt> = couple.iter().map(|(l, r)| (*l+*r)/2.).collect();
//*/
//
//let space = 100;
//let dst = 30;
//for i in 0..l_tmp.len() {
// if i % space == 0 {
// //
// }
//}
self.line = l3;
println!("rest:{}\t", ll.len());
}
/// the function also set: self.v_lst
fn populate_hlst(&mut self, pt_all: &mut HashSet<(i32, i32)>) {
let first = pt_all.iter().next().unwrap();
let mut added = HashSet::from([(first.0, first.1)]);
let to_look = [
(-1, 0),
(0, -1),
(1, 0),
(0, 1),
(-1, -1),
(-1, 1),
(1, 1),
(1, -1),
];
self.h_lst.extend(&added);
while added.len() > 0 {
let mut tmp = HashSet::new();
for (x, y) in added {
for (i, j) in to_look {
if let Some(pt_new) = pt_all.get(&(x + i, y + j)) {
tmp.insert(*pt_new);
}
}
}
self.h_lst.extend(tmp.clone());
tmp.iter().for_each(|pt| {
pt_all.remove(pt);
});
added = tmp;
}
let mut tmp = HashSet::new();
self.h_lst.iter().for_each(|(x, y)| {
for (i, j) in to_look[..4].iter() {
if self.h_lst.get(&(x + i, y + j)).is_none() {
tmp.insert((*x, *y));
}
}
});
self.h_lst = tmp;
println!("\t\t\t\tfinal selecteted:{}", self.h_lst.len());
//dbg!(a);
//println!(I);
}
}
pub fn get_lines(
m: &Mat,
y_ordering: bool,
beg_lowest: bool,
nb_liss: i32,
) -> Result<Vec<Vec<Pt>>> {
// donc on va refaire un algo de detection de segement
// * on va chercher des illot:
// * chaque illo on lui definie des limit (min, max) sur x et y
// * on calcule le centre
let mut pt_inside = HashSet::new();
let (cols, rows) = (m.cols(), m.rows());
for j in 0..rows {
for i in 0..cols {
let v: &Point3_<u8> = m.at_2d(j, i)?;
if v.x != 0 && v.y != 0 && v.z != 0 {
pt_inside.insert((i, j));
}
}
}
println!("\tFlifou: {}\t\tpt_inserted:{}", line!(), pt_inside.len());
let mut lines = vec![];
while pt_inside.len() > 0 {
lines.push(Line::new(&mut pt_inside, y_ordering, beg_lowest, nb_liss));
}
println!("\tFlifou: {}\t\tnb_line:{}", line!(), lines.len());
// pour chaque ligne
Ok(lines.iter().map(|line| line.line.clone()).collect())
}
#[derive(Debug)]
struct Seg {
h_lst: HashSet<(i32, i32)>,
v_lst: Vec<Pt>,
min: Pt,
max: Pt,
center: Pt,
beg: Pt,
end: Pt,
}
impl Seg {
pub fn new(pt_all: &mut HashSet<(i32, i32)>, y_ordering: bool, beg_lowest: bool) -> Self {
let mut illand = Seg {
min: Pt::from((f64::MAX, f64::MAX)),
max: Pt::from((f64::MIN, f64::MIN)),
center: Pt::from((0., 0.)),
beg: Pt::from((0., 0.)),
end: Pt::from((0., 0.)),
h_lst: HashSet::new(),
v_lst: vec![],
};
if pt_all.len() <= 0 {
return illand;
}
//dbg!(&pt_all);
illand.populate_hlst(pt_all);
//println!("");
illand.define_beg_end(false, beg_lowest);
//dbg!(&illand);
illand
}
//fn define_beg_end(&mut self, y_ordering: bool, beg_lowest: bool) {
// // on a tout les point ordonner
// // on peut les re-ordonner selon un axes interne
//}
/// the function also set: self.v_lst
fn populate_hlst(&mut self, pt_all: &mut HashSet<(i32, i32)>) {
let first = pt_all.iter().next().unwrap();
let mut added = HashSet::from([(first.0, first.1)]);
let to_look = [
(-1, 0),
(0, -1),
(1, 0),
(0, 1),
(-1, -1),
(-1, 1),
(1, 1),
(1, -1),
];
self.h_lst.extend(&added);
while added.len() > 0 {
let mut tmp = HashSet::new();
for (x, y) in added {
for (i, j) in to_look {
if let Some(pt_new) = pt_all.get(&(x + i, y + j)) {
tmp.insert(*pt_new);
}
}
}
self.h_lst.extend(tmp.clone());
tmp.iter().for_each(|pt| {
pt_all.remove(pt);
});
added = tmp;
}
// calcule min, max, center
self.h_lst.iter().for_each(|(x, y)| {
self.min.x = (*x as f64).min(self.min.x);
self.max.x = (*x as f64).max(self.max.x);
self.min.y = (*y as f64).min(self.min.y);
self.max.y = (*y as f64).max(self.max.y);
self.center.x += *x as f64;
self.center.y += *y as f64;
});
self.center /= self.h_lst.len() as f64;
self.v_lst = self
.h_lst
.iter()
.map(|(x, y)| Pt {
x: (*x as f64),
y: (*y as f64),
})
.collect();
}
/// y_ordering: means we ordering vertically. Else we ordering horizontay
/// beg_lowest: means first value are the lowset. Else first value are the biggest
fn define_beg_end(&mut self, y_ordering: bool, beg_lowest: bool) {
let pts: Vec<Pt> = self
.h_lst
.iter()
.map(|(x, y)| {
Pt {
x: (*x as f64),
y: (*y as f64),
} - self.center
})
.collect();
let y_cmp = |pt_a: &Pt, pt_b: &Pt| {
if (pt_a.y > pt_b.y) == beg_lowest {
Ordering::Greater
} else if pt_a.y == pt_b.y {
if pt_a.x.abs() > pt_b.x.abs() {
Ordering::Greater
} else if pt_a.x.abs() == pt_b.x.abs() {
Ordering::Equal
} else {
Ordering::Less
}
} else {
Ordering::Less
}
};
let x_cmp = |pt_a: &Pt, pt_b: &Pt| {
if (pt_a.x > pt_b.x) == beg_lowest {
Ordering::Greater
} else if pt_a.x == pt_b.x {
if pt_a.y.abs() > pt_b.y.abs() {
Ordering::Greater
} else if pt_a.y.abs() == pt_b.y.abs() {
Ordering::Equal
} else {
Ordering::Less
}
} else {
Ordering::Less
}
};
//println!("\n\nserching axes:");
// finding by dichotomie
// finding best central axes.
let mut begin = 0.;
let mut len = 8.;
let nb_deg = 8;
let nb_iter = 20;
let mut id_min = 0;
let mut v_max_x = vec![];
for _iter in 0..nb_iter {
//println!("iter:{_iter}");
v_max_x = vec![];
for i in 0..(nb_deg + 2) {
let rad = (i as f64 - 1.) / len * PI + begin;
let axes_x = Pt::from((rad.cos(), rad.sin()));
let axes_y = Pt::from((-rad.sin(), rad.cos()));
let new_base: Vec<Pt> = pts
.iter()
.map(|pt| Pt::from((pt.cross(&axes_x), pt.cross(&axes_y))))
.collect();
let mut max_x = 0.;
new_base.iter().for_each(|pt| {
if pt.x.abs() > max_x {
max_x = pt.x.abs();
}
});
//println!("\t[i:{i}]rad:{rad:32.26}\tval: {max_x}");
v_max_x.push((rad, max_x));
}
id_min = 0;
for i in 1..=nb_deg {
let (p, n, a) = (v_max_x[i - 1].1, v_max_x[i].1, v_max_x[i + 1].1);
let cnd = (y_ordering && n <= p && n <= a) || (!y_ordering && n >= p && n >= a);
id_min = if cnd { i - 1 } else { id_min };
}
begin = v_max_x[id_min].0;
len *= 4.;
}
let rad = v_max_x[id_min + 1].0;
let axes_x = Pt::from((rad.cos(), rad.sin()));
let axes_y = Pt::from((-rad.sin(), rad.cos()));
let mut npts: Vec<Pt> = pts
.iter()
.map(|pt| Pt::from((pt.cross(&axes_x), pt.cross(&axes_y))))
.collect();
if y_ordering {
npts.sort_by(y_cmp);
} else {
npts.sort_by(x_cmp);
}
let mut beg = Pt::from((0., 0.));
for pt in npts[..(npts.len() / 2)].iter() {
beg += *pt;
}
beg /= (npts.len() / 2) as f64;
let mut end = Pt::from((0., 0.));
for pt in npts[(npts.len() / 2)..].iter() {
end += *pt;
}
end /= (npts.len() - (npts.len() / 2)) as f64;
let beg_tmp = axes_x * beg.x + axes_y * beg.y + self.center;
let end_tmp = axes_x * end.x + axes_y * end.y + self.center;
self.beg = (beg_tmp - end_tmp) * 1.5 + end_tmp;
self.end = (end_tmp - beg_tmp) * 1.5 + beg_tmp;
}
}
pub fn get_segment(
m: &Mat,
y_ordering: bool,
beg_lowest: bool,
) -> Result<Vec<((f64, f64), (f64, f64))>> {
// donc on va refaire un algo de detection de segement
// * on va chercher des illot:
// * chaque illo on lui definie des limit (min, max) sur x et y
// * on calcule le centre
let mut pt_inside = HashSet::new();
let (cols, rows) = (m.cols(), m.rows());
for j in 0..rows {
for i in 0..cols {
let v: &Point3_<u8> = m.at_2d(j, i)?;
if v.x != 0 && v.y != 0 && v.z != 0 {
pt_inside.insert((i, j));
}
}
}
let mut illands = vec![];
while pt_inside.len() > 0 {
illands.push(Seg::new(&mut pt_inside, y_ordering, beg_lowest));
}
//todo!();
if y_ordering {
illands.sort_by(|a, b| {
if beg_lowest && a.center.y > b.center.y || !beg_lowest && a.center.y < b.center.y {
Ordering::Greater
} else if a.center.y == b.center.y {
Ordering::Equal
} else {
Ordering::Less
}
});
} else {
illands.sort_by(|a, b| {
if beg_lowest && a.center.x > b.center.x || !beg_lowest && a.center.x < b.center.x {
Ordering::Greater
} else if a.center.x == b.center.x {
Ordering::Equal
} else {
Ordering::Less
}
});
}
let segments = illands
.iter()
.map(|illand| ((illand.beg.x, illand.beg.y), (illand.end.x, illand.end.y)))
.collect();
Ok(segments)
}
// On cherche des segment regourper par ilot de point. chaque illot a une plage de valeur en y qui
// lui est propre, aucun autre ilot aura des point dans une plage de valeurs d'un autre illot.
pub fn get_vertical_segment(m: &Mat) -> Result<Vec<(((f32, f32), (f32, f32)), f32)>> {
// on va faire un histogram des point selon leur position en y
// ca permetera des les differencier
// on fait cette histo gramme pour connaitre ces plage de valeur en y
let mut seg_pt = HashSet::from([]);
let (cols, rows) = (m.cols(), m.rows());
let mut histo_y = vec![0.; cols.max(rows) as usize];
for j in 0..rows {
for i in 0..cols {
let v: &Point3_<u8> = m.at_2d(j, i)?;
if v.x != 0 && v.y != 0 && v.z != 0 {
seg_pt.insert((i, j));
histo_y[j as usize] += 1.;
}
}
}
// on determine le debut et la fin de ces palge de l=valeur en y
let mut histo_limit = vec![];
for i in (0..(histo_y.len() - 1)).rev() {
if histo_y[i] != 0. && histo_y[i + 1] == 0. {
histo_limit.push(Cnt::End(i));
}
if histo_y[i] == 0. && histo_y[i + 1] != 0. {
histo_limit.push(Cnt::Beg(i + 1));
}
}
let mut limits = vec![];
for k in 0..(histo_limit.len() / 2) {
if let (Cnt::Beg(a), Cnt::End(b)) = (histo_limit[2 * k + 1], histo_limit[2 * k]) {
limits.push((a, b));
}
}
// on regroupe les point par illot.
let mut segment_iland = vec![vec![]; limits.len()];
for (x, y) in seg_pt {
let id = get_id_groups(&limits, y as usize).unwrap();
segment_iland[id].push((x, y));
}
// on transforme chaque point en pt: (f32, f32) -> Pt
// toujours avec la meme structure d'ilot.
let segment_iland_pt: Vec<Vec<Pt>> = segment_iland
.iter()
.map(|iland| {
iland
.iter()
.map(|(x, y)| Pt {
x: *x as f64,
y: *y as f64,
})
.collect()
})
.collect();
// Pour chaque ilot de pixel: on prend le centre, on cherche l'axe qui passe le plus au centre
// de l'illot. Pour trouver cet axe, pour chaque pixel de l'ilot, on va calculer l'eccart au
// carree avec cet axe. On selectionne l'axe qui a l'erreur la plus faible
// TODO: peut etre un meileur algo de recheche de l'axe (dicotomie en partie)
// En suite on tris ces pixel et on prend la moiter la plus haute et la moiter la plus basse
// part raport a l'axe. On fait la mayenne des ces 2 groupe et on a les extremiter haute et
// basse pour cet ilot de pixel. En suite on multiplie par 2 ce segement pour qui soit de la
// taille de l'ilots.
//
// TODO: La selection de l'axe qui passe au centre de l'ilot pourrauiut aussi etre meilleur
// au lieux d'utiliser l'arreur, on pourrait regarder la valeur absolue de la coordoner x la plus petit
// DONE=> j'ai tester une autre methode mais il y a plus d'erreur... mais
// l'orientation des segment est pas mal. En gros l'orientation de l'axe n'est pas
// toujours la meme. C'est du a la fonction de tris. La fonction ne s'execute pas dans
// le meme ordre sur les valeur, Et quand 2 valeurs sont identique, elle peuvent etre
// inter changer.
// TODO: La selection des pixel pour chaque illot pourrait etre ameliorer
// En fait elle me va bien. C'est vrai que il ne sont pas ouf mais bon...
let mut segments = vec![];
for (_i, iland) in segment_iland_pt.iter().enumerate() {
let mut center = Pt { x: 0., y: 0. };
for p in iland {
center += *p;
}
center /= iland.len() as f64;
let max_deg = 8;
let (mut _err_min, mut rad_min, mut x_min) = (f64::MAX, 0., f64::MAX);
let mut iland_min = vec![];
for deg in 0..max_deg {
let rad = (deg as f64) / (max_deg as f64) * PI * 2.;
let y_axis = Pt {
x: rad.sin(),
y: rad.cos(),
};
let x_axis = Pt {
x: -y_axis.y,
y: y_axis.x,
};
let mut tmp_iland = vec![];
let mut x_abs_max = f64::MIN;
for pt in iland {
let mut p = *pt - center;
p = Pt {
x: p.cross(&x_axis),
y: p.cross(&y_axis),
};
tmp_iland.push(p);
if x_abs_max < p.x.abs() {
x_abs_max = p.x.abs();
}
}
if x_abs_max < x_min {
x_min = x_abs_max;
rad_min = rad;
iland_min = tmp_iland;
}
}
iland_min.sort_by(|pta, ptb| {
if pta.y < ptb.y {
std::cmp::Ordering::Greater
} else if pta.y == ptb.y {
if pta.x.abs() < ptb.x.abs() {
std::cmp::Ordering::Greater
} else if pta.x.abs() == ptb.x.abs() {
std::cmp::Ordering::Equal
} else {
std::cmp::Ordering::Less
}
} else {
std::cmp::Ordering::Less
}
});
let id1 = iland_min.len() / 2;
let id2 = iland_min.len() - id1;
let mean_up = Pt::mean(&iland_min[..id1]);
let mean_down = Pt::mean(&iland_min[id2..]);
//let mean_up = iland_min[0];
//let mean_down = iland_min.last().unwrap();
let y_axis = Pt {
x: rad_min.sin(),
y: rad_min.cos(),
};
let x_axis = Pt {
x: -y_axis.y,
y: y_axis.x,
};
let pt_up = center + (y_axis * mean_up.y) + (x_axis * mean_up.x);
let pt_down = center + (y_axis * mean_down.y) + (x_axis * mean_down.x);
//segments.push(((pt_down.x as f32, pt_down.y as f32), (pt_up.x as f32, pt_up.y as f32)));
let pt_up_2 = pt_down + (pt_up - pt_down) * 1.5;
let pt_down_2 = pt_up + (pt_down - pt_up) * 1.5;
segments.push((
(
(pt_down_2.x as f32, pt_down_2.y as f32),
(pt_up_2.x as f32, pt_up_2.y as f32),
),
x_min as f32,
));
}
Ok(segments)
}
#[allow(dead_code)]
fn average_pt_i32(vals: &[(i32, i32)]) -> (f32, f32) {
let (mut mean_x, mut mean_y) = (0., 0.);
let len = vals.len() as f32;
for (x, y) in vals {
mean_x += *x as f32;
mean_y += *y as f32;
}
(mean_x / len, mean_y / len)
}
fn get_id_groups(limits: &Vec<(usize, usize)>, id: usize) -> Option<usize> {
for (id_seg, (min, max)) in limits.iter().enumerate() {
if id >= *min && id <= *max {
return Some(id_seg);
}
}
None
//return usize::MAX; // im lazy to have Option return...
}
#[allow(dead_code)]
pub fn annalyse_segment(m: &Mat) -> Result<Vec<Vec<(i32, i32)>>> {
// on recupere les coordoner des point selectioner
let mut seg_pt = HashSet::from([]);
let (cols, rows) = (m.cols(), m.rows());
for j in 0..rows {
for i in 0..cols {
let v: &Point3_<u8> = m.at_2d(j, i)?;
if v.x != 0 && v.y != 0 && v.z != 0 {
seg_pt.insert((i, j));
}
}
}
// on garde que ceux qui sont frontiere
//let around_all = [(-1, -1), (-1, 0), (-1, 1), (0, 1), (1, 1), (1, 0), (1, -1), (0, -1)];
let around_all = [(-1, 0), (0, 1), (1, 0), (0, -1)];
let mut selected: HashSet<(i32, i32)> = seg_pt
.iter()
.filter_map(|(x, y)| {
for (_k, (i, j)) in around_all.iter().enumerate() {
if seg_pt.get(&(*x + i, *y + j)).is_none() {
return Some((*x, *y));
}
}
None
})
.collect();
//let around = [(-1, 0), (0, -1), (1, 0), (0, 1), (-1, -1), (1, -1), (1, 1), (-1, 1)];
let around = [
(-1, 1),
(0, 1),
(1, 1),
(1, 0),
(1, -1),
(0, -1),
(-1, -1),
(-1, 0),
];
let mut lines = vec![];
while selected.len() > 0 {
let mut outed: HashSet<(i32, i32)> = HashSet::from([]);
let (x, y) = selected.iter().next().unwrap();
let mut line = vec![(*x, *y)];
outed.insert((*x, *y));
let mut last = 0;
'line: loop {
let (x, y) = line[line.len() - 1];
for k in 0..around.len() {
let (i, j) = around[(k + last) % around.len()];
if seg_pt.get(&(x + i, y + j)).is_some() && outed.get(&(x + i, y + j)).is_none() {
line.push((x + i, y + j));
outed.insert((x + i, y + j));
last = k + last + around.len() - 2;
// ici on pourrait cleaner le rest
//for l in (k+1)..around.len() {
// let (i, j) = around[(l+last)%around.len()];
// outed.insert((x+i, y+j));
// //
//}
continue 'line;
}
}
break;
}
lines.push(line);
for (x, y) in outed {
selected.remove(&(x, y));
}
}
println!("\nseg: {}", lines.len());
Ok(lines)
}
#[allow(dead_code)]
pub fn image_mean(frames: &[Mat]) -> Result<Mat> {
/*
* Il faudrait pouvoir changer les matrice de type pour avoir des valeur plus grande
* */
let mut frames_big: Vec<Mat> = vec![];
let len = frames.len() as i16;
for frame in frames {
let mut tmp = Mat::default();
frame.convert_to(&mut tmp, 19, 1., 0.)?; // 19 is for: CV_16SC3
frames_big.push(tmp);
}
let mut img_sum: Mat = frames_big[0].clone();
let mask = Mat::default();
for frame in frames_big[1..].iter() {
let mut tmp = Mat::default();
add(&img_sum, &frame, &mut tmp, &mask, -1)?;
img_sum = tmp;
}
let (cols, rows) = (img_sum.cols(), img_sum.rows());
for j in 0..rows {
for i in 0..cols {
let v: &mut Point3_<i16> = img_sum.at_2d_mut(j, i)?;
v.x /= len;
v.y /= len;
v.z /= len;
}
}
let mut mean = Mat::default();
img_sum.convert_to(&mut mean, 16, 1., 0.)?; // 16 is for: CV_8UC3
Ok(mean)
}
pub fn image_diff(frame: &Mat, frame_prev: &Mat) -> Result<Mat> {
let mut diff_bgr = Mat::default();
let mut diff_bgr_2 = Mat::default();
let mut d_bgr = Mat::default();
let (row, col) = (frame.rows(), frame.cols());
let mask = Mat::default();
let v: VecN<f64, 4> = VecN::new(128., 128., 128., 128.);
let mid: Mat = Mat::new_rows_cols_with_default(row, col, CV_8UC3, v)?;
// ca parait etonant d'enlever la difference dans l'autre sens mais paradoxalement, ca permet
// d'avoir toutes les valeur, pck a chaque fois les valeur negative sont mise a 0 dans
// l'operation de soustraction
subtract(frame, frame_prev, &mut diff_bgr, &mask, -1)?;
add(&diff_bgr, &mid, &mut diff_bgr_2, &mask, -1)?;
subtract(frame_prev, frame, &mut diff_bgr, &mask, -1)?;
subtract(&diff_bgr_2, &diff_bgr, &mut d_bgr, &mask, -1)?;
Ok(d_bgr)
}
pub fn histogram_3d(m: &Mat, nb_liss: i32) -> Result<Vec<Vec<f64>>> {
let (cols, rows) = (m.cols(), m.rows());
let mut histo = vec![vec![0.; 256]; 3];
// on calcule l'histograme
for j in 0..rows {
for i in 0..cols {
let v: &Point3_<u8> = m.at_2d(j, i)?;
let (b, g, r) = (v.x as usize, v.y as usize, v.z as usize);
histo[2][r] += 1.;
histo[1][g] += 1.;
histo[0][b] += 1.;
}
}
// on lisse l'histograme
for j in 0..3 {
let mut tmp = histo[j].clone();
for _ in 0..nb_liss {
for i in 1..(tmp.len() - 1) {
histo[j][i] = (tmp[i - 1] + 1. * tmp[i] + tmp[i + 1]) / 3.;
}
tmp = histo[j].clone();
}
}
Ok(histo)
}
pub fn histogram_1d(m: &Mat, nb_liss: i32) -> Result<Vec<f64>> {
let (cols, rows) = (m.cols(), m.rows());
let mut histo = vec![0; 256];
let mut m_gray = Mat::default();
// on convertie en gris
cvt_color(m, &mut m_gray, COLOR_BGR2GRAY, 0)?;
// on calcule l'histograme
for j in 0..rows {
for i in 0..cols {
let v: &u8 = m_gray.at_2d(j, i)?;
let id = *v as usize;
histo[id] += 1;
}
}
// on lisse l'histograme
let mut histo: Vec<f64> = histo.iter().map(|x| *x as f64).collect();
let mut tmp = histo.clone();
for _ in 0..nb_liss {
for i in 1..(histo.len() - 1) {
histo[i] = (tmp[i - 1] + 2. * tmp[i] + tmp[i + 1]) / 4.;
}
tmp = histo.clone();
}
Ok(histo)
}
pub fn first_invert(histo: &Vec<f64>) -> ((usize, f64), (usize, f64)) {
// on applique un log puis on normalise mar le log du max
let mut normalised = vec![0.; histo.len()];
let mut p1 = vec![0.; histo.len() / 2];
let mut p2 = vec![0.; histo.len() / 2];
let mut dp1 = vec![0.; histo.len() / 2];
let mut dp2 = vec![0.; histo.len() / 2];
let mid = (histo.len() + 1) / 2;
let max = (histo[mid] as f64).log10(); // on par du principe que le max est au centre
for i in 0..histo.len() {
normalised[i] = (histo[i] as f64 + 1.).log10() / max;
}
for i in (mid)..(histo.len() - 1) {
p1[i - mid] = mid as f64 * ((normalised[mid] - normalised[i + 1]) / (i - mid + 2) as f64);
}
for i in (1..mid).rev() {
p2[mid - i - 1] = mid as f64 * ((normalised[mid] - normalised[i]) / (mid - i) as f64);
}
for i in 0..(mid - 1) {
dp1[i] = p1[i + 1] - p1[i];
dp2[i] = p2[i + 1] - p2[i];
}
let mut dist_1 = 0;
for (i, v) in dp1.iter().enumerate() {
if v < &0. {
dist_1 = i;
break;
}
}
let mut dist_2 = 0;
for (i, v) in dp2.iter().enumerate() {
if v < &0. {
dist_2 = i;
break;
}
}
(
(dist_1, normalised[mid + dist_1]),
(dist_2, normalised[mid - dist_2]),
)
}
#[allow(dead_code)]
pub fn trackbar_init_param(mem: &mut Param, winname: &str) -> Result<()> {
named_window(winname, WINDOW_AUTOSIZE)?;
highgui::move_window(winname, 20, 20)?;
let v: VecN<f64, 4> = VecN::new(0., 0., 0., 255.);
let m = Mat::new_rows_cols_with_default(1, 1024, CV_8UC3, v)?;
highgui::imshow(winname, &m)?;
create_trackbar("nb_all", winname, Some(&mut mem.nb_all), 400, None)?;
create_trackbar("nb_visible", winname, Some(&mut mem.nb_visible), 400, None)?;
create_trackbar("nb_wait", winname, Some(&mut mem.nb_wait), 40, None)?;
create_trackbar("r", winname, Some(&mut mem.r), MAX_TRACKBAR, None)?;
create_trackbar("g", winname, Some(&mut mem.g), MAX_TRACKBAR, None)?;
create_trackbar("b", winname, Some(&mut mem.b), MAX_TRACKBAR, None)?;
Ok(())
}
#[allow(dead_code)]
pub fn trackbar_line_segment(mem: &mut Param, winname: &str) -> Result<()> {
//highgui
let winname = format!("{}: {}", winname, 0); //"bord selected: 0";
named_window(winname.as_str(), WINDOW_AUTOSIZE)?;
highgui::move_window(winname.as_str(), 20, 520)?;
//highgui::move_window(winname, 20, 20)?;
let v: VecN<f64, 4> = VecN::new(0., 0., 0., 255.);
let m = Mat::new_rows_cols_with_default(1, 1800, CV_8UC3, v)?;
highgui::imshow(winname.as_str(), &m)?;
//
create_trackbar(
"canny min",
winname.as_str(),
Some(&mut mem.canny_v1),
MAX_TRACKBAR,
None,
)?;
create_trackbar(
"canny max",
winname.as_str(),
Some(&mut mem.canny_v2),
MAX_TRACKBAR,
None,
)?;
create_trackbar(
"rho : ",
winname.as_str(),
Some(&mut mem.hough_param.rho),
1000,
None,
)?;
create_trackbar(
"theta : ",
winname.as_str(),
Some(&mut mem.hough_param.theta),
1000,
None,
)?;
create_trackbar(
"treshold: ",
winname.as_str(),
Some(&mut mem.hough_param.treshold),
255,
None,
)?;
create_trackbar(
"min_leng: ",
winname.as_str(),
Some(&mut mem.hough_param.min_length),
1000,
None,
)?;
create_trackbar(
"max_gap : ",
winname.as_str(),
Some(&mut mem.hough_param.max_line_gap),
50000,
None,
)?;
Ok(())
}
#[allow(dead_code)]
pub fn line_pos(mem: &mut Param, winname: &str) -> Result<()> {
named_window(winname, WINDOW_AUTOSIZE)?;
highgui::move_window(winname, 20, 20)?;
let v: VecN<f64, 4> = VecN::new(0., 0., 0., 255.);
let m = Mat::new_rows_cols_with_default(1, 1024, CV_8UC3, v)?;
highgui::imshow(winname, &m)?;
for i in 0..mem.line_pos.len() {
create_trackbar(
format!("pt[{i}]:\t").as_str(),
winname,
Some(&mut mem.line_pos[i]),
4095,
None,
)?;
}
Ok(())
}
pub fn adding_trackbar(mem: &mut Param, _winname: &str) -> Result<()> {
//println!("winname: {winname}");
//line_pos(&mut mem, "Play Line")?;
trackbar_init_param(mem, "init_param")?;
named_window("histo bgr", WINDOW_AUTOSIZE)?;
associate_trackbar("histo bgr", &mut mem.tresh)?;
create_trackbar(
"nb_liss",
"histo bgr",
Some(&mut mem.nb_liss),
MAX_TRACKBAR,
None,
)?;
//trackbar_line_segment(mem, "line detector")?;
Ok(())
}
pub fn associate_trackbar(winname: &str, tresh: &mut Treshold) -> Result<()> {
create_trackbar(
"blue min: ",
winname,
Some(&mut tresh.min_0),
MAX_TRACKBAR,
None,
)?;
create_trackbar(
"blue max: ",
winname,
Some(&mut tresh.max_0),
MAX_TRACKBAR,
None,
)?;
create_trackbar(
"green min: ",
winname,
Some(&mut tresh.min_1),
MAX_TRACKBAR,
None,
)?;
create_trackbar(
"green max: ",
winname,
Some(&mut tresh.max_1),
MAX_TRACKBAR,
None,
)?;
create_trackbar(
"red min: ",
winname,
Some(&mut tresh.min_2),
MAX_TRACKBAR,
None,
)?;
create_trackbar(
"red max: ",
winname,
Some(&mut tresh.max_2),
MAX_TRACKBAR,
None,
)?;
Ok(())
}