LJ/clitools/filters/anaglyph.py
2020-10-09 18:30:28 +02:00

202 lines
6.3 KiB
Python
Executable File

#!/usr/bin/python3
# -*- coding: utf-8 -*-
# -*- mode: Python -*-
'''
anaglyph
v0.1.0
Attempts to create a valid 3D-glasses structure
LICENCE : CC
by cocoa
'''
from __future__ import print_function
import argparse
import ast
import math
import os
import random
import sys
import time
name = "filters::cycle"
maxDist = 300
argsparser = argparse.ArgumentParser(description="Redis exporter LJ")
argsparser.add_argument("-x","--centerX",help="geometrical center X position",default=400,type=int)
argsparser.add_argument("-y","--centerY",help="geometrical center Y position",default=400,type=int)
argsparser.add_argument("-m","--min",help="Minimal displacement (default:2) ",default=1,type=int)
argsparser.add_argument("-M","--max",help="Maximal displacement (default:20) ",default=5,type=int)
argsparser.add_argument("-f","--fps",help="Frame Per Second",default=30,type=int)
argsparser.add_argument("-v","--verbose",action="store_true",help="Verbose")
args = argsparser.parse_args()
fps = args.fps
minVal = args.min
maxVal = args.max
centerX = args.centerX
centerY = args.centerY
verbose = args.verbose
optimal_looptime = 1 / fps
name = "filters::anaglyph"
def debug(*args, **kwargs):
if( verbose == False ):
return
print(*args, file=sys.stderr, **kwargs)
def rgb2int(rgb):
#debug(name,"::rgb2int rbg:{}".format(rgb))
return int('0x%02x%02x%02x' % tuple(rgb),0)
def isValidColor( color, intensityColThreshold ):
if color[0] + color[1] + color[2] > intensityColThreshold:
return True
return False
# These are paper colors
red = (41,24,24)
white = (95,95,95)
blue = (0,41,64)
red = (255,0,0)
blue = (0,255,255)
white = (255,255,255)
def anaglyph( pl ):
debug(name,'--------------- new loop ------------------')
# We will send one list after the other to optimize color change
blueList = list()
redList = list()
whiteList = list()
out = []
out1 = []
out2 = []
out3 = []
# The anaglyphic effect will be optained by :
# * having close objects appear as white
# * having distant objects appear as blue + red
# * having in between objects appear as distanceDecreased(white) + blue + red
for i, point in enumerate(pl):
ref_x = point[0]-centerX
ref_y = point[1]-centerY
ref_color = point[2]
angle = math.atan2( ref_x , ref_y )
dist = ref_y / math.cos(angle)
white_rvb = (0,0,0)
blue_rvb = (0,0,0)
red_rvb = (0,0,0)
# Calculate the point's spread factor (0.0 to 1.0)
# The spread is high if the point is close to center
"""
dist = 0 : spread = 1.0
dist = maxDist spread = 0.0
"""
if dist == 0:
spread = 1.0
else :
spread =( maxDist - dist ) / maxDist
if spread < 0.0:
spread = 0.0
#debug(name,"dist:{} spread:{}".format(dist,spread))
# White color is high if spread is low, i.e. point away from center
"""
spread = 1.0 : white_c = 0.0
spread = 0.0 : whice_c = 1.0
"""
if point[2] == 0:
white_color = 0
else:
white_factor = 1.0 - math.pow(spread,0.5)
white_rvb = tuple(map( lambda a: int(white_factor* a), white))
white_color = rgb2int( white_rvb)
#debug(name,"spread:{}\t white_rvb:{}\t white_color:{}".format(spread, white_rvb, white_color))
# Blue and Red colors are high if spread is high, i.e. close to center
"""
spread = 1.0 : red_c = 1.0
spread = 0.0 : red_c = 0.0
"""
color_factor = math.pow(spread,1)
if point[2] == 0:
blue_color = 0
red_color = 0
else:
blue_rvb = tuple(map( lambda a: int(color_factor * a), blue))
blue_color = rgb2int( blue_rvb)
red_rvb = tuple(map( lambda a: int(color_factor * a), red))
red_color = rgb2int( red_rvb)
#debug(name,"color_factor:{}\t\t blue_color:{}\t\t red_color:{}".format(color_factor,blue_color,red_color))
# Blue-to-Red spatial spread is high when spread is high, i.e. point close to center
"""
spread = 1.0 : spatial_spread = maxVal
spread = 0.0 : spatial_spread = minVal
"""
spatial_spread = minVal + spread * (maxVal - minVal)
#debug(name,"spatial_spread:{}".format(spatial_spread))
red_x = int(point[0] + spatial_spread)
blue_x = int(point[0] - spatial_spread )
red_y = int(point[1] )
blue_y = int(point[1])
white_point = [point[0], point[1], white_color]
blue_point = [blue_x,blue_y,blue_color]
red_point = [red_x,red_y,red_color]
#debug(name,"white[x,y,c]:{}".format(white_point))
#debug(name,"blue[x,y,c]:{}".format(blue_point))
#debug(name,"red[x,y,c]:{}".format(red_point))
# Do not append "black lines" i.e. a color where each composent is below X
# if isValidColor(white_rvb, 150):
# out1.append(white_point)
# if isValidColor(blue_rvb, 50):
# out2.append(blue_point)
# if isValidColor(red_rvb, 30):
# out3.append(red_point)
out1.append(white_point)
out2.append(blue_point)
out3.append(red_point)
#debug(name,"source pl:{}".format(pl))
debug(name,"whiteList:{}".format(out1))
debug(name,"blueList:{}".format(out2))
debug(name,"redList:{}".format(out3))
return out3 + out2
return out1 + out3 + out2
#return out1 + out2 + out3
try:
while True:
start = time.time()
line = sys.stdin.readline()
if line == "":
time.sleep(0.01)
line = line.rstrip('\n')
pointsList = ast.literal_eval(line)
# Do the filter
result = anaglyph( pointsList )
print( result, flush=True )
looptime = time.time() - start
# debug(name+" looptime:"+str(looptime))
if( looptime < optimal_looptime ):
time.sleep( optimal_looptime - looptime)
# debug(name+" micro sleep:"+str( optimal_looptime - looptime))
except EOFError:
debug(name+" break")# no more information