forked from protonphoton/LJ
459 lines
13 KiB
Python
459 lines
13 KiB
Python
# coding=UTF-8
|
|
|
|
'''
|
|
Multi Laser planetarium in python3
|
|
|
|
Remember : LJ will automatically warp geometry according to alignement data. See webUI.
|
|
|
|
Todo:
|
|
|
|
- Validate aa2radec() with online calculator. Rewrite it to remove need for Astropy.
|
|
- Findout how to use OSC in python 3.
|
|
- Code WebUI page.
|
|
- UpdateStars() in each laser sky. Get magnitude. See UpdateSolar for example.
|
|
- Draw operations should also check visibility in the given laser altitude range.
|
|
- Rewrite CityPosition() with proper search in a python dictionnary.
|
|
- Better python code. Better varuable to understand easily Update() methods.
|
|
|
|
LICENCE : CC
|
|
'''
|
|
|
|
#import redis
|
|
import lj3
|
|
import numpy as np
|
|
import math,time
|
|
|
|
from astropy.coordinates import SkyCoord, EarthLocation, AltAz
|
|
from astropy import units as u
|
|
from astropy.time import Time
|
|
|
|
from skyfield.api import Star, load, Topos,Angle
|
|
from skyfield.data import hipparcos
|
|
|
|
import json
|
|
|
|
'''
|
|
is_py2 = sys.version[0] == '2'
|
|
if is_py2:
|
|
from Queue import Queue
|
|
else:
|
|
from queue import Queue
|
|
'''
|
|
|
|
#
|
|
# Arguments handler
|
|
#
|
|
|
|
import argparse
|
|
|
|
print ("")
|
|
print ("Arguments parsing if needed...")
|
|
argsparser = argparse.ArgumentParser(description="Planetarium for LJ")
|
|
argsparser.add_argument("-r","--redisIP",help="IP of the Redis server used by LJ (127.0.0.1 by default) ",type=str)
|
|
argsparser.add_argument("-c","--client",help="LJ client number (0 by default)",type=int)
|
|
argsparser.add_argument("-l","--laser",help="Laser number to be displayed (0 by default)",type=int)
|
|
#argsparser.add_argument("-n","--name",help="City Name of the observer",type=str)
|
|
#argsparser.add_argument("-r","--redisIP",help="Country code of the observer ",type=str)
|
|
|
|
args = argsparser.parse_args()
|
|
|
|
|
|
if args.client:
|
|
ljclient = args.client
|
|
else:
|
|
ljclient = 0
|
|
|
|
if args.laser:
|
|
lasernumber = args.laser
|
|
else:
|
|
lasernumber = 0
|
|
|
|
# Redis Computer IP
|
|
if args.redisIP != None:
|
|
redisIP = args.redisIP
|
|
else:
|
|
redisIP = '127.0.0.1'
|
|
|
|
lj3.Config(redisIP,ljclient)
|
|
|
|
#
|
|
# Inits Laser
|
|
#
|
|
|
|
fov = 256
|
|
viewer_distance = 2.2
|
|
width = 450
|
|
height = 450
|
|
centerX = width / 2
|
|
centerY = height / 2
|
|
|
|
samparray = [0] * 100
|
|
# (x,y,color in integer) 65280 is color #00FF00
|
|
# Green rectangular shape :
|
|
pl0 = [(100,300,65280),(200,300,65280),(200,200,65280),(100,200,65280),(100,300,65280)]
|
|
|
|
|
|
|
|
# If you want to use rgb for color :
|
|
def rgb2int(r,g,b):
|
|
return int('0x%02x%02x%02x' % (r,g,b),0)
|
|
|
|
white = rgb2int(255,255,255)
|
|
red = rgb2int(255,0,0)
|
|
blue = rgb2int(0,0,255)
|
|
green = rgb2int(0,255,0)
|
|
|
|
|
|
|
|
def Proj(x,y,z,angleX,angleY,angleZ):
|
|
|
|
rad = angleX * math.pi / 180
|
|
cosa = math.cos(rad)
|
|
sina = math.sin(rad)
|
|
y2 = y
|
|
y = y2 * cosa - z * sina
|
|
z = y2 * sina + z * cosa
|
|
|
|
rad = angleY * math.pi / 180
|
|
cosa = math.cos(rad)
|
|
sina = math.sin(rad)
|
|
z2 = z
|
|
z = z2 * cosa - x * sina
|
|
x = z2 * sina + x * cosa
|
|
|
|
rad = angleZ * math.pi / 180
|
|
cosa = math.cos(rad)
|
|
sina = math.sin(rad)
|
|
x2 = x
|
|
x = x2 * cosa - y * sina
|
|
y = x2 * sina + y * cosa
|
|
|
|
|
|
""" Transforms this 3D point to 2D using a perspective projection. """
|
|
factor = fov / (viewer_distance + z)
|
|
x = x * factor + centerX
|
|
y = - y * factor + centerY
|
|
return (x,y)
|
|
|
|
#
|
|
# All the coordinates base functions
|
|
#
|
|
|
|
'''
|
|
To minize number of sky objects coordinates conversion : Change planetarium FOV in Ra Dec to select objects
|
|
(planets, hipparcos,..). Then get those objects in AltAz coordinates.
|
|
aa2radec compute Equatorial Right Ascension and Declinaison coordinates from given observator Altitude and Azimuth.
|
|
Example ra,dec = aa2radec( azimuth = 0, altitude = 90, lati = 48.85341, longi = 2.3488, elevation = 100, t =AstroPyNow )
|
|
with AstroPyNow = Time.now()
|
|
'''
|
|
def aa2radec(azimuth,altitude,lati,longi,elevation,t):
|
|
#print ("az",azimuth,"alt",altitude,"lati",lati,"long",longi,"elev",elevation,"time",t)
|
|
Observer = EarthLocation(lat=lati * u.deg, lon=longi *u.deg, height= elevation*u.m,)
|
|
ObjectCoord = SkyCoord(alt = altitude * u.deg, az = azimuth *u.deg, obstime = t, frame = 'altaz', location = Observer)
|
|
#print("icrs",ObjectCoord.icrs)
|
|
#print("ICRS Right Ascension", ObjectCoord.icrs.ra)
|
|
#print("ICRS Declination", ObjectCoord.icrs.dec)
|
|
return ObjectCoord.icrs.ra.degree, ObjectCoord.icrs.dec.degree
|
|
|
|
|
|
|
|
# Compute given object apparent positions (ra,dec,alt,az) and distance from given gps earth position (in decimal degrees) at UTC time (in skyfield format)
|
|
def EarthObjPosition(gpslat,gpslong,object,t):
|
|
|
|
|
|
#print (object, 'at', t.utc_iso())
|
|
Observer = earth + Topos(gpslat, gpslong)
|
|
astrometric = earth.at(t).observe(object)
|
|
ra, dec, distance = astrometric.radec()
|
|
'''
|
|
print("Right ascencion",ra)
|
|
print("RA in degree",ra._degrees)
|
|
print("RA in radians",ra.radians)
|
|
print("declinaison",dec)
|
|
print (distance)
|
|
'''
|
|
ApparentPosition = Observer.at(t).observe(object).apparent()
|
|
alt, az, distance = ApparentPosition.altaz('standard')
|
|
'''
|
|
print("UTC",t.utc_iso())
|
|
print ("Altitude",alt)
|
|
print("Altitude in radians",alt.radians)
|
|
print("Altitude in degrees",alt.degrees)
|
|
print("Altitude in dms",alt.dms(0))
|
|
print("Altitude in signed_dms",alt.signed_dms(0))
|
|
print("Azimuth", az.dstr())
|
|
print ("Distance from position", distance)
|
|
'''
|
|
#return ra._degrees, dec, alt.degrees, az, distance
|
|
return alt.degrees, az.degrees
|
|
|
|
|
|
# Add Radec coordinates for all lasers from user defined Altaz coordinates in LaserSkies variable at given earth position and time.
|
|
# LaserSkies : [LeftAzi, RightAzi, TopAlt, BotAlt, LeftRa, RightRa, TopDec, BottomDec]
|
|
# 0 1 2 3 4 5 6 7
|
|
def RadecSkies(LaserSkies,Skylat,Skylong,Skyelevation,AstroSkyTime):
|
|
|
|
print()
|
|
print("Converting", lasernumber, "LaserSkies limits in Right Ascension & Declination (radec) coordinates ")
|
|
for laser in range(lasernumber):
|
|
# Left top point
|
|
LaserSkies[laser][4],LaserSkies[laser][6] = aa2radec(azimuth = LaserSkies[laser][0], altitude =LaserSkies[laser][2], lati = Skylat, longi = Skylong, elevation = Skyelevation, t =AstroSkyTime)
|
|
# Right Bottom point
|
|
LaserSkies[laser][5],LaserSkies[laser][7] = aa2radec(azimuth = LaserSkies[laser][1], altitude =LaserSkies[laser][3], lati = Skylat, longi = Skylong, elevation = Skyelevation, t =AstroSkyTime)
|
|
print(LaserSkies)
|
|
print ("Done.")
|
|
|
|
|
|
def azimuth2scrX(leftAzi,rightAzi,s):
|
|
a1, a2 = leftAzi,rightAzi
|
|
b1, b2 = -width/2, width/2
|
|
return b1 + ((s - a1) * (b2 - b1) / (a2 - a1))
|
|
|
|
|
|
|
|
def altitude2scrY(topAlti,botAlti,s):
|
|
a1, a2 = botAlti, topAlti
|
|
b1, b2 = -heigth/2, heigth/2
|
|
return b1 + ((s - a1) * (b2 - b1) / (a2 - a1))
|
|
|
|
|
|
|
|
|
|
#
|
|
# Solar System
|
|
#
|
|
|
|
|
|
def LoadSolar():
|
|
global planets, SolarObjects, earth
|
|
|
|
print("Loading Solar System (de421)...")
|
|
# de421.bps https://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/planets/a_old_versions/de421.bsp
|
|
planets = load('data/de421.bsp')
|
|
earth = planets['earth']
|
|
print('Loaded.')
|
|
|
|
# de421 objects
|
|
# [Object name, object altitude, object azimuth]
|
|
SolarObjects = [['MERCURY',0.0, 0.0], ['VENUS', 0.0, 0.0], ['JUPITER BARYCENTER', 0.0, 0.0], ['SATURN BARYCENTER', 0.0, 0.0], ['URANUS BARYCENTER', 0.0, 0.0], ['NEPTUNE BARYCENTER', 0.0, 0.0], ['PLUTO BARYCENTER', 0.0, 0.0], ['SUN', 0.0, 0.0], ['MOON', 0.0, 0.0], ['MARS', 0.0, 0.0]]
|
|
|
|
def UpdateSolar():
|
|
global SolarObjects
|
|
|
|
print()
|
|
print("Updating solar system (de421) objects position for observer at", Skylat, Skylong, "time", SkyfieldTime.utc_iso())
|
|
# Compute Alt Az coordinates for all solar objects for observer.
|
|
for number,object in enumerate(SolarObjects):
|
|
|
|
#print(object[0],number)
|
|
SolarObjects[number][1],SolarObjects[number][2] = EarthObjPosition(Skylat,Skylong,planets[object[0]],SkyfieldTime)
|
|
print (SolarObjects)
|
|
print ("Done.")
|
|
|
|
# Draw the SolarShapeObject for any Solar object is in the laser Sky
|
|
def DrawSolar(LaserSkies, laser):
|
|
|
|
for number,object in enumerate(SolarObjects):
|
|
|
|
# Solar object is in given laser sky aeimuth range ?
|
|
# Need to add an altitude check.
|
|
|
|
if LaserSkies[laser][0] < SolarObjects[number][2] < LaserSkies[laser][1]:
|
|
lj3.rPolyLineOneColor(SolarObjectShape, c = white, PL = laser, closed = False, xpos = azimuth2scrX(LaserSkies[laser][0],LaserSkies[laser][1],SolarObjects[number][2]), ypos = azimuth2scrY(LaserSkies[laser][2],LaserSkies[laser][3],SolarObjects[number][0]), resize = 2.5, rotx =0, roty =0 , rotz=0)
|
|
|
|
|
|
|
|
|
|
#
|
|
# Stars Objects
|
|
#
|
|
|
|
def LoadHipparcos(ts):
|
|
global hipdata
|
|
|
|
print("Loading hipparcos catalog...")
|
|
#hipparcosURL = 'ftp://cdsarc.u-strasbg.fr/cats/I/239/hip_main.dat.gz'
|
|
hipparcosURL = 'data/hip_main.dat.gz'
|
|
with load.open(hipparcosURL) as f:
|
|
hipdata = hipparcos.load_dataframe(f)
|
|
print("Loaded.")
|
|
hipparcos_epoch = ts.tt(1991.25)
|
|
|
|
|
|
# CODE IMPORTED HERE FROM TESTS. NEEDS TO ADAPT
|
|
# Star selection
|
|
def StarSelect():
|
|
|
|
hipparcos_epoch = ts.tt(1991.25)
|
|
barnards_star = Star.from_dataframe(hipdata.loc[87937])
|
|
polaris = Star.from_dataframe(hipdata.loc[11767])
|
|
print()
|
|
print ("Selecting sky portion")
|
|
|
|
hipdatafilt = hipdata[hipdata['magnitude'] <= 2.5]
|
|
print(('After filtering, there are {} stars with magnitude <= 2.5'.format(len(hipdatafilt))))
|
|
bright_stars = Star.from_dataframe(hipdatafilt)
|
|
print (hipdatafilt)
|
|
#print (bright_stars)
|
|
|
|
t = ts.utc(2018, 9, 3)
|
|
|
|
'''
|
|
Observer = earth + Topos(gpslat, gpslong)
|
|
ApparentPosition = Observer.at(t).observe(bright_stars).apparent()
|
|
alt, az, distance = ApparentPosition.altaz('standard')
|
|
print(('Now there are {} azimuth'.format(len(az))))
|
|
print(('and {} altitute'.format(len(alt))))
|
|
'''
|
|
|
|
astrometric = earth.at(t).observe(bright_stars)
|
|
ra, dec, distance = astrometric.radec()
|
|
print(('Now there are {} right ascensions'.format(len(ra.hours))))
|
|
print(('and {} declinations'.format(len(dec.degrees))))
|
|
|
|
Observer = earth + Topos(gpslat, gpslong)
|
|
AP = Observer.at(t).observe(bright_stars)
|
|
print ("AP",AP.apparent())
|
|
|
|
|
|
|
|
|
|
# WORK IN PROGRESS
|
|
# On Earth Gps positions
|
|
# https://github.com/lutangar/cities.json.git
|
|
#
|
|
def LoadCities():
|
|
global cities
|
|
|
|
print("Loading World Cities GPS position...")
|
|
f=open("data/cities.json","r")
|
|
s = f.read()
|
|
cities = json.loads(s)
|
|
print("Loaded.")
|
|
|
|
|
|
# search a city to get longitude and latitude. Need to understand python dictionnaries.
|
|
def CityPositiion(cityname, countrycode):
|
|
|
|
for city in range(len(cities['cities'])):
|
|
if cities['cities'][city]['name']==cityname and cities['cities'][city]['country']==countrycode:
|
|
'''
|
|
print (cities['cities'][city]['country'])
|
|
print (cities['cities'][city]['name'])
|
|
print (cities['cities'][city]['lat'])
|
|
print (cities['cities'][city]['lng'])
|
|
'''
|
|
return float(cities['cities'][city]['lat']), float(cities['cities'][city]['lng'])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Add Kompass letter to given laser point list if it is in laser sky at Y axis 300
|
|
def DrawOrientation(LaserSkies, laser):
|
|
|
|
# North direction is in given laser sky azimuth range?
|
|
if LaserSkies[laser][0] < 0 < LaserSkies[laser][1]:
|
|
lj3.Text("N",white,laser,azimuth2scrX(LaserSkies[laser][0],LaserSkies[laser][1],0),300)
|
|
|
|
# East direction is in given laser sky azimuth range ?
|
|
if LaserSkies[laser][0] < 90 < LaserSkies[laser][1]:
|
|
lj3.Text("E",white,laser,azimuth2scrX(LaserSkies[laser][0],LaserSkies[laser][1],90),300)
|
|
|
|
# South direction is in given laser sky azimuth range ?
|
|
if LaserSkies[laser][0] < 180 < LaserSkies[laser][1]:
|
|
lj3.Text("S",white,laser,azimuth2scrX(LaserSkies[laser][0],LaserSkies[laser][1],180),300)
|
|
|
|
# West direction is in given laser sky azimuth range ?
|
|
if LaserSkies[laser][0] < 270 < LaserSkies[laser][1]:
|
|
lj3.Text("W",white,laser,azimuth2scrX(LaserSkies[laser][0],LaserSkies[laser][1],270),300)
|
|
|
|
|
|
|
|
|
|
# Compute LaserSkies Coordinates
|
|
def UpdateObserver(SkyCity, SkyCountryCode, time,ts):
|
|
global LaserSkies, Skylat, Skylong, SkyfieldTime
|
|
|
|
# Observer position i.e : Paris FR
|
|
#Skylat = 48.85341 # decimal degree
|
|
#Skylong = 2.3488 # decimal degree
|
|
print()
|
|
print("Observer GPS position and time...")
|
|
Skylat, Skylong = CityPositiion(SkyCity,SkyCountryCode)
|
|
print ("GPS Position of",SkyCity, "in", SkyCountryCode, ":",Skylat,Skylong)
|
|
# City GPS altitude not in Cities database... Let's say it's :
|
|
Skyelevation = 100 # meters
|
|
|
|
# Observer Time : Now
|
|
# Other time in Astropy style
|
|
# times = '1999-01-01T00:00:00.123456789'
|
|
# t = Time(times, format='isot', scale='utc')
|
|
print()
|
|
AstroSkyTime = time
|
|
print ("AstroPyNow", AstroSkyTime)
|
|
SkyfieldTime = ts.from_astropy(AstroSkyTime)
|
|
print("Time from AstropyUTC",SkyfieldTime.utc_iso())
|
|
print("Skyfield UTC",SkyfieldTime.utc_iso())
|
|
|
|
|
|
# Computer for all Laser "skies" their Right Ascension/Declinaison coordinates from their Altitude/azimuth Coordinates.
|
|
# to later select their visible objects in radec catalogs like hipparcos.
|
|
# LaserSky definition for one laser (in decimal degrees) : [LeftAzi, RightAzi, TopAlt, BotAlt, LeftRa, RightRa, TopDec, BottomDec]
|
|
# With 4 lasers with each one a quarter of the 360 ° real sky, there is 4 LaserSky :
|
|
LaserSkies = [[0.0,90.0,90.0,0.0,0.0,0.0,0.0,0.0],[90,180,90,0,0,0,0,0],[180,270,90,0,0,0,0,0],[270,360,90,0,0,0,0,0]]
|
|
RadecSkies(LaserSkies, Skylat, Skylong, Skyelevation, AstroSkyTime)
|
|
|
|
|
|
|
|
#
|
|
# Main functions
|
|
#
|
|
|
|
|
|
def Planetarium():
|
|
|
|
ts = load.timescale()
|
|
LoadHipparcos(ts)
|
|
LoadSolar()
|
|
LoadCities()
|
|
|
|
SkyCity = 'Paris'
|
|
SkyCountryCode = 'FR'
|
|
UpdateObserver(SkyCity, SkyCountryCode, Time.now(),ts)
|
|
|
|
print()
|
|
print ("Updating Sky Objects for current observer...")
|
|
|
|
UpdateSolar()
|
|
# UpdateStars() Todo
|
|
|
|
DisplayStars = False
|
|
DisplaySolar = True
|
|
DisplayOrientation = True
|
|
|
|
|
|
while 1:
|
|
|
|
for laser in range(lasernumber):
|
|
|
|
if DisplayOrientation:
|
|
DrawOrientation(LaserSkies, laser)
|
|
if DisplaySolar:
|
|
DrawSolar()
|
|
if DisplayStars:
|
|
pass
|
|
|
|
lj3.DrawPL(laser)
|
|
time.sleep(0.01)
|
|
|
|
|
|
|
|
Planetarium()
|
|
|
|
|
|
|