#!/usr/bin/python3 # -*- coding: utf-8 -*- # -*- mode: Python -*- ''' Tracer v0.8.2 Etherdream DACs handler on network via Redis LICENCE : CC Sam Neurohack, pclf Includes live conversion in etherdream coordinates, geometric corrections, color balance change, intensity limitation, grid display,... One tracer process is launched per requested laser by LJ. Lasers parameters in LJ.conf. Live I/O based on redis keys : inputs (Pointlists to draw,...) and outputs (DAC state, errors,..). Keys are mostly read and set at each main loop. This tracer include an enhanced version (support for several lasers) of the etherdream python library from j4cDAC. * Redis keys reference * - Drawing things : /pl/Scene/lasernumber [(x,y,color),(x1,y1,color),...] The live list of drawn pygame points. Tracer continously ask redis for key /clientkey+lasernumber /resampler/lasernumber [(1.0,8), (0.25,3),(0.75,3),(1.0,10)] : a string for resampling rules. the first tuple (1.0,8) is for short line < 4000 in etherdream space (0.25,3),(0.75,3),(1.0,10) for long line > 4000 i.e (0.25,3) means go at 25% position on the line, send 3 times this position to etherdream /clientkey "/pl/SceneNumber/" What Scene to retrieve from redis /EDH/lasernumber - Tracer control : /order 0-8 Set redis key with new value then issue the order number 0 : Draw Normal point list 1 : Get the new EDH = reread redis key /EDH/lasernumber 2 : Draw BLACK point list 3 : Draw GRID point list 4 : Resampler Change (longs and shorts lsteps) 5 : Client Key Change = reread redis key /clientkey 6 : Max Intensity Change = reread redis key /intensity 7 : kpps change = reread redis key /kpps 8 : color balance change = reread redis keys /red /green /blue - Managing Etherdream DACs : Discrete drawing values /kpps 0- DAC output speed to laser, then order 7. Depends of actual angle /intensity 0-255 Laser output power, then order 6 (for alignement,...) /red 0-100 % of full red, then order 8 /green 0-100 % of full green, then order 8 /blue 0-100 % of full blue, then order 8 DAC status report /lstt/lasernumber etherdream last_status.playback_state (0: idle 1: prepare 2: playing) /cap/lasernumber number of empty points sent to fill etherdream buffer (up to 1799) /lack/lasernumber "a": ACK "F": Full "I": invalid. 64 or 35 for no connection. Geometric corrections Doctodo ''' import socket import time import struct #from gstt import debug from libs3 import gstt,log import math from itertools import cycle #from globalVars import * import pdb import ast import redis from libs3 import homographyp import numpy as np import binascii black_points = [(278.0,225.0,0),(562.0,279.0,0),(401.0,375.0,0),(296.0,454.0,0),(298.0,165.0,0)] grid_points = [(300.0,200.0,0),(500.0,200.0,65280),(500.0,400.0,65280),(300.0,400.0,65280),(300.0,200.0,65280),(300.0,200.0,0),(200.0,100.0,0),(600.0,100.0,65280),(600.0,500.0,65280),(200.0,500.0,65280),(200.0,100.0,65280)] r = redis.StrictRedis(host=gstt.LjayServerIP, port=6379, db=0) # r = redis.StrictRedis(host=gstt.LjayServerIP , port=6379, db=0, password='-+F816Y+-') ackstate = {'61': 'ACK', '46': 'FULL', '49': "INVALID", '21': 'STOP', '64': "NO CONNECTION ?", '35': "NO CONNECTION ?" , '97': 'ACK', '70': 'FULL', '73': "INVALID", '33': 'STOP', '100': "NOCONNECTION", '48': "NOCONNECTION", 'a': 'ACK', 'F': 'FULL', 'I': "INVALID", '!': 'STOP', 'd': "NO CONNECTION ?", '0': "NO CONNECTION ?"} lstate = {'0': 'IDLE', '1': 'PREPARE', '2': "PLAYING", '64': "NOCONNECTION ?" } def pack_point(laser, intensity, x, y, r, g, b, i = -1, u1 = 0, u2 = 0, flags = 0): """Pack some color values into a struct dac_point.""" #print("Tracer", laser,":", r,g,b,"intensity", intensity, "i", i) if r > intensity: r = intensity if g > intensity: g = intensity if b > intensity: b = intensity if max(r, g, b) == 0: i = 0 else: i = intensity x = int(x) y = int(y) #print("Tracer ", laser, ": packing", x, y, r, g, b, "intensity", intensity, "i", i) if x < -32767: if gstt.debug >1: log.err("Tracer "+ str(laser) +" : x coordinates " + str(x) + " was below -32767") x = -32000 if x > 32767: if gstt.debug >1: log.err("Tracer "+ str(laser) +" : x coordinates "+ str(x) + " was bigger than 32767") x = 32000 if y < -32767: if gstt.debug >1: log.err("Tracer "+ str(laser) +" : y coordinates "+ str(y) + " was below -32767") y = -32000 if y > 32767: if gstt.debug >1: log.err("Tracer "+ str(laser) +" : y coordinates "+ str(y) + " was bigger than 32767") y = 32000 return struct.pack(" 1: self.status.dump(prefix) class DAC(object): """A connection to a DAC.""" # "Laser point List" Point generator # each points is yielded : Getpoints() call n times OnePoint() def OnePoint(self): while True: print("\n\n\n\t\t^^^^") ### here self.pl has all the point in one frame #pdb.set_trace() ### print(self.pl) ### <<<< On peut introduire ici l'autre optimisation for indexpoint,currentpoint in enumerate(self.pl): print(indexpoint, currentpoint) xyc = [currentpoint[0],currentpoint[1],currentpoint[2]] self.xyrgb = self.EtherPoint(xyc) ### ### print("1-\nxyrgb[2:]") ### ### print(self.xyrgb[2:]) ### print("VVxyrgb") ### print(self.xyrgb) ### print("\n") rgb = (round(self.xyrgb[2:][0] *self.intred/100), round(self.xyrgb[2:][1] *self.intgreen/100), round(self.xyrgb[2:][2] *self.intblue/100)) #print("rgb :", rgb) #round(*self.intred/100) #round(*self.intgreen/100) #round(*self.intblue/100) delta_x, delta_y = self.xyrgb[0] - self.xyrgb_prev[0], self.xyrgb[1] - self.xyrgb_prev[1] #test adaptation selon longueur ligne print("delta_x: "+str(delta_x) + "\t\tdelta_y: "+str(delta_y)) print("norme delta:\t" + str(math.hypot(delta_x, delta_y))) if math.hypot(delta_x, delta_y) < 4000: # For glitch art : decrease lsteps #l_steps = [ (1.0, 8)] print("little line") l_steps = gstt.stepshortline else: # For glitch art : decrease lsteps #l_steps = [ (0.25, 3), (0.75, 3), (1.0, 10)] l_steps = gstt.stepslongline print("big line") print(l_steps) ### print("\n\nl_step:") ### print(l_steps) pAdd = 0 ### *** ###for e in l_steps: ### *** ### step = e[0] ### *** ### for i in range(0,e[1]): ### *** ### pAdd +=1 ### *** ### self.xyrgb_step = (self.xyrgb_prev[0] + step*delta_x, self.xyrgb_prev[1] + step*delta_y) + rgb # + self.xyrgb_prev[2:]# + rgb ### *** ### #print(self.xyrgb_step) ### *** ### yield self.xyrgb_step yield (self.xyrgb[0], self.xyrgb[1]) + rgb self.xyrgb_prev = self.xyrgb print("point added:\t" + str(pAdd)) print("\n") def GetPoints(self, n): d = [next(self.newstream) for i in range(n)] #print d return d # Etherpoint all transform in one matrix, with warp !! # xyc : x y color def EtherPoint(self,xyc): c = xyc[2] #print("") #print("pygame point",[(xyc[0],xyc[1],xyc[2])]) #gstt.EDH[self.mylaser]= np.array(ast.literal_eval(r.get('/EDH/'+str(self.mylaser)))) position = homographyp.apply(gstt.EDH[self.mylaser],np.array([(xyc[0],xyc[1])])) #print("etherdream point",position[0][0], position[0][1], ((c >> 16) & 0xFF) << 8, ((c >> 8) & 0xFF) << 8, (c & 0xFF) << 8) return (position[0][0], position[0][1], ((c >> 16) & 0xFF) << 8, ((c >> 8) & 0xFF) << 8, (c & 0xFF) << 8) def read(self, l): """Read exactly length bytes from the connection.""" while l > len(self.buf): self.buf += self.conn.recv(4096) obuf = self.buf self.buf = obuf[l:] return obuf[:l] def readresp(self, cmd): """Read a response from the DAC.""" data = self.read(22) response = data[0] gstt.lstt_dacanswers[self.mylaser] = response cmdR = chr(data[1]) status = Status(data[2:]) r.set('/lack/'+str(self.mylaser), response) if cmdR != cmd: raise ProtocolError("expected resp for %r, got %r" % (cmd, cmdR)) if response != ord('a'): raise ProtocolError("expected ACK, got %r" % (response, )) self.last_status = status return status def __init__(self, mylaser, PL, port = 7765): """Connect to the DAC over TCP.""" socket.setdefaulttimeout(2) self.mylaser = mylaser self.clientkey = r.get("/clientkey").decode('ascii') #log.info("Tracer "+str(self.mylaser)+" connecting to "+ gstt.lasersIPS[mylaser]) #print("DAC", self.mylaser, "Handler process, connecting to", gstt.lasersIPS[mylaser] ) self.conn = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self.connstatus = self.conn.connect_ex((gstt.lasersIPS[mylaser], port)) if self.connstatus == 35 or self.connstatus == 64: log.err("Tracer "+ str(self.mylaser)+" ("+ gstt.lasersIPS[mylaser]+"): "+ackstate[str(self.connstatus)]) else: print("Tracer "+ str(self.mylaser)+" ("+ gstt.lasersIPS[mylaser]+"): "+ackstate[str(self.connstatus)]) # ipconn state is -1 at startup (see gstt) and modified here r.set('/lack/'+str(self.mylaser), self.connstatus) gstt.lstt_ipconn[self.mylaser] = self.connstatus self.buf = b'' # Upper case PL is the Point List number self.PL = PL # Lower case pl is the actual point list coordinates #pdb.set_trace() self.pl = ast.literal_eval(r.get(self.clientkey + str(self.mylaser)).decode('ascii')) if r.get('/EDH/'+str(self.mylaser)) == None: #print("Laser",self.mylaser,"NO EDH !! Computing one...") homographyp.newEDH(self.mylaser) else: gstt.EDH[self.mylaser] = np.array(ast.literal_eval(r.get('/EDH/'+str(self.mylaser)).decode('ascii'))) #print("Laser",self.mylaser,"found its EDH in redis") #print gstt.EDH[self.mylaser] self.xyrgb = self.xyrgb_prev = (0,0,0,0,0) self.intensity = 65280 self.intred = 100 self.intgreen = 100 self.intblue = 100 self.newstream = self.OnePoint() if gstt.debug >0: print("Tracer",self.mylaser,"init asked for ckey", self.clientkey+str(self.mylaser)) if self.connstatus != 0: #print("" log.err("Connection ERROR " +str(self.connstatus)+" with laser "+str(mylaser)+" : "+str(gstt.lasersIPS[mylaser])) #print("first 10 points in PL",self.PL, self.GetPoints(10) else: print("Connection status for DAC "+str(self.mylaser)+" : "+ str(self.connstatus)) # Reference points # Read the "hello" message first_status = self.readresp("?") first_status.dump() position = [] def begin(self, lwm, rate): cmd = struct.pack("