[feat] drawing_optimisation: in progess

the feature implement a paper: https://art-science.org/journal/v7n4/v7n4pp155/artsci-v7n4pp155.pdf

there is some generator to test the optimisation in: ./clitools/generators/drawingTests/
Now, all the optimisation will be in ./libs3/plotOptimizer.py
in ./libs3/tracer3.py the adding of point is avoid an will be replace by the optimisation from the paper
This commit is contained in:
Lapin 2020-12-17 20:21:04 +01:00
parent 8164320694
commit f3314441d3
6 changed files with 493 additions and 27 deletions

View File

@ -0,0 +1,98 @@
#!/usr/bin/python3
# -*- coding: utf-8 -*-
# -*- mode: Python -*-
'''
This generator print different angle form 0 to 180 degres
v0.1.0
LICENCE : CC
by lapin (aka nipal)
'''
from __future__ import print_function
import time
import argparse
import sys
import math
name="generator::endingPoint"
def debug(*args, **kwargs):
if( verbose == False ):
return
print(*args, file=sys.stderr, **kwargs)
argsparser = argparse.ArgumentParser(description="dummy generator")
argsparser.add_argument("-f","--fps",help="Frame Per Second",default=30,type=int)
argsparser.add_argument("-s","--speed",help="point per frame progress",default=3,type=int)
argsparser.add_argument("-v","--verbose",action="store_true",help="Verbose output")
args = argsparser.parse_args()
fps=args.fps
verbose=args.verbose
optimal_looptime = 1 / fps
debug(name+" optimal looptime "+str(optimal_looptime))
width = 800
height = 800
white = 0xFFFFFF
blank = 0
radius = 100
offset_circles = 10
beg_angle = 0
end_angle = 90
offset_angle = 10
angles_lines = []
shape = []
def set_angles_lines():
margin = radius + offset_circles
spacing_betwen = 2 * radius + offset_circles
circles_per_line = math.floor((width - margin) / spacing_betwen)
for ang in range(beg_angle, end_angle + offset_angle, offset_angle):
nb = int(ang / offset_angle)
cx = margin + (nb % circles_per_line) * spacing_betwen
cy = margin + int(nb / circles_per_line) * spacing_betwen
px = radius * math.cos(math.radians(ang))
py = radius * math.sin(math.radians(ang))
# line up
angles_lines.append([-px + cx, py + cy, blank])
angles_lines.append([-px + cx, py + cy, white])
angles_lines.append([ cx, 2 + cy, white])
angles_lines.append([ px + cx, py + cy, white])
#angles_lines.append([ px + cx, py + cy, blank])
# line down
angles_lines.append([-px + cx, -py + cy, blank])
angles_lines.append([-px + cx, -py + cy, white])
angles_lines.append([ cx, -2 + cy, white])
angles_lines.append([ px + cx, -py + cy, white])
#angles_lines.append([ px + cx, -py + cy, blank])
set_angles_lines()
shape = angles_lines
# print(angles_lines)
while True:
start = time.time()
print(shape, flush=True);
looptime = time.time() - start
if( looptime < optimal_looptime ):
time.sleep( optimal_looptime - looptime)
debug(name+" micro sleep:"+str( optimal_looptime - looptime))

View File

@ -0,0 +1,117 @@
#!/usr/bin/python3
# -*- coding: utf-8 -*-
# -*- mode: Python -*-
'''
This generator print a shape with 3 discinected component, 2 non eulerian and one eulerian.
v0.1.0
LICENCE : CC
by lapin (aka nipal)
'''
from __future__ import print_function
import time
import argparse
import sys
import math
name="generator::endingPoint"
def debug(*args, **kwargs):
if( verbose == False ):
return
print(*args, file=sys.stderr, **kwargs)
def debug2(*args, **kwargs):
print(*args, file=sys.stderr, **kwargs)
argsparser = argparse.ArgumentParser(description="dummy generator")
argsparser.add_argument("-f","--fps",help="Frame Per Second",default=30,type=int)
argsparser.add_argument("-s","--speed",help="point per frame progress",default=3,type=int)
argsparser.add_argument("-v","--verbose",action="store_true",help="Verbose output")
args = argsparser.parse_args()
fps=args.fps
verbose=args.verbose
optimal_looptime = 1 / fps
debug(name+" optimal looptime "+str(optimal_looptime))
width = 800
height = 800
white = 0xFFFFFF
blank = 0
def shape_scale(shape, scale_factor):
new_shape = []
for p in shape:
new_shape.append([p[0] * scale_factor, p[1] * scale_factor, p[2]])
return new_shape
def shape_incr(shape, x, y):
new_shape = []
for p in shape:
new_shape.append([p[0] + x, p[1] + y, p[2]])
return new_shape
comp_a = []
comp_b = []
comp_c = []
comp_b.append([ 0, 3, blank])
comp_b.append([ 0, 4, white])
comp_b.append([ 0, 0, white])
comp_b.append([ 3, 0, white])
comp_b.append([ 3, 6, white])
comp_b.append([ 3, 6, white])
comp_b.append([ 3, 0, white])
comp_b.append([ 3, 0, blank])
comp_b.append([ 3, 0, white])
comp_b.append([ 5, 4, white])
comp_b.append([ 5, 4, blank])
comp_a.append([ 5, 17, blank])
comp_a.append([ 5, 17, white])
comp_a.append([ 0, 5, white])
comp_a.append([12, 0, white])
comp_a.append([17, 12, white])
comp_a.append([ 5, 17, white])
comp_a.append([ 5, 17, blank])
comp_c.append([-3, 5, blank])
comp_c.append([-3, 5, white])
comp_c.append([ 0, 4, white])
comp_c.append([ 0, 0, white])
comp_c.append([ 4, 0, white])
comp_c.append([ 4, 4, white])
comp_c.append([ 7, 5, white])
comp_c.append([ 7, 5, blank])
comp_a = shape_scale(comp_a, 11)
comp_a = shape_incr(comp_a, 300, 75)
comp_b = shape_scale(comp_b, 45)
comp_b = shape_incr(comp_b, 0, 300)
comp_c = shape_scale(comp_c, 30)
comp_c = shape_incr(comp_c, 600, 300)
shape = comp_a + comp_b + comp_c
while True:
start = time.time()
print(shape, flush=True);
looptime = time.time() - start
if( looptime < optimal_looptime ):
time.sleep( optimal_looptime - looptime)
debug(name+" micro sleep:"+str( optimal_looptime - looptime))

View File

@ -0,0 +1,77 @@
#!/usr/bin/python3
# -*- coding: utf-8 -*-
# -*- mode: Python -*-
'''
This generator print 3 static vertical line.
The aim is to show The aim is to show the laser beam ignition time.
beam when ther is no optimisation
v0.1.0
LICENCE : CC
by lapin (aka nipal)
'''
from __future__ import print_function
import time
import argparse
import sys
name="generator::endingPoint"
def debug(*args, **kwargs):
if( verbose == False ):
return
print(*args, file=sys.stderr, **kwargs)
argsparser = argparse.ArgumentParser(description="dummy generator")
argsparser.add_argument("-f","--fps",help="Frame Per Second",default=30,type=int)
argsparser.add_argument("-s","--speed",help="point per frame progress",default=3,type=int)
argsparser.add_argument("-v","--verbose",action="store_true",help="Verbose output")
args = argsparser.parse_args()
fps=args.fps
verbose=args.verbose
optimal_looptime = 1 / fps
debug(name+" optimal looptime "+str(optimal_looptime))
white = 0xFFFFFF
blank = 0
offset_y = 100
offset_x = 50
begin_x = 200
begin_y = 200
shape_factor = [
[0, 0, white],
[0, 1, blank],
[1, 1, white],
[1, 0, blank],
[2, 0, white],
[2, 1, blank],
[2, 1, blank],
]
shape = []
for point in shape_factor:
shape.append([begin_x + offset_x * point[0],
begin_y + offset_y * point[1],
point[2]])
while True:
start = time.time()
print(shape, flush=True);
looptime = time.time() - start
if( looptime < optimal_looptime ):
time.sleep( optimal_looptime - looptime)
debug(name+" micro sleep:"+str( optimal_looptime - looptime))

View File

@ -0,0 +1,84 @@
#!/usr/bin/python3
# -*- coding: utf-8 -*-
# -*- mode: Python -*-
'''
This generator print a shape with best angle representation when the path is redraw
v0.1.0
LICENCE : CC
by lapin (aka nipal)
'''
from __future__ import print_function
import time
import argparse
import sys
import math
name="generator::endingPoint"
def debug(*args, **kwargs):
if( verbose == False ):
return
print(*args, file=sys.stderr, **kwargs)
def debug2(*args, **kwargs):
print(*args, file=sys.stderr, **kwargs)
argsparser = argparse.ArgumentParser(description="dummy generator")
argsparser.add_argument("-f","--fps",help="Frame Per Second",default=30,type=int)
argsparser.add_argument("-s","--speed",help="point per frame progress",default=3,type=int)
argsparser.add_argument("-v","--verbose",action="store_true",help="Verbose output")
args = argsparser.parse_args()
fps=args.fps
verbose=args.verbose
optimal_looptime = 1 / fps
debug(name+" optimal looptime "+str(optimal_looptime))
width = 800
height = 800
white = 0xFFFFFF
blank = 0
point_offset = 250
point_width = 4
point_list = [
[8,7,6,10,7,3,6,2,7,11,6,9],
[5,6,1,],
[4,7,12,],
]
shape = []
# on ajoute des lilste de point
for l in point_list:
x = point_offset * ((l[0] - 1) % (point_width))
y = point_offset * int((l[0] - 1) / (point_width))
shape.append([x, y, blank])
debug2("=====")
debug2(f"id: {l[0]}\tx: {x}\ty: {y}\t\tpoint_width: {point_width}\t\n")
for p in l:
x = point_offset * ((p - 1) % (point_width))
y = point_offset * int((p - 1) / (point_width))
shape.append([x, y, white])
debug2(f"id: {p}\tx: {x}\ty: {y}\t\tpoint_width: {point_width}\t\n")
while True:
start = time.time()
print(shape, flush=True);
looptime = time.time() - start
if( looptime < optimal_looptime ):
time.sleep( optimal_looptime - looptime)
debug(name+" micro sleep:"+str( optimal_looptime - looptime))

93
libs3/plotOptimizer.py Normal file
View File

@ -0,0 +1,93 @@
class Node:
def __init__(self, sid, color):
self.sid = sid
self.connected = []
self.used = False
self.color = color
self.is_free = None # may be an other value to initialise
def add_nodes(self, neighbord):
not_the_same = neighbord != self.sid
not_allrady_inside = neighbord not in self.connected
if neighbord != self.sid and neighbord not in self.connected:
self.connected.append(neighbord)
# print the content of the objet to debug with print()
def __repr__(self):
is_free = " \t###" if self.is_free else " \t___"
return is_free + str(self.connected) + "\n"
#class Graph:
# nodes = {} # dict of all nodes
#
# def __init__(selt):
# pass
def list_to_nodes(pl):
all_nodes = {} # it will contain all nodes
sid_prev = None
for p in pl:
sid = str([int(p[0]), int(p[1])])
is_colored = p[2] != 0
if is_colored:
if sid not in all_nodes:
all_nodes[sid] = Node(sid, p[2])
if sid_prev != None:
all_nodes[sid].add_nodes(sid_prev)
all_nodes[sid_prev].add_nodes(sid)
sid_prev = sid if is_colored else None
return all_nodes
# recursiv function witch get all connected node for one component and tag them as used
def get_one_comp(id_elem, nodes):
comp = []
comp.append(id_elem)
nodes[id_elem].used = True
for id_near in nodes[id_elem].connected:
if nodes[id_near].used == False:
comp += get_one_comp(id_near, nodes)
return comp
def get_comps(nodes):
comps = [] #all component
iter_nodes = iter(nodes)
nb_elem = len(nodes)
for id_nodes in iter_nodes:
if nodes[id_nodes].used == False:
comps.append(get_one_comp(id_nodes, nodes))
return comps
# if ther is a class for the component it would be a good idea to set en atribute about eulerian graph or non eulerian graph
def set_free_vertices(components, nodes):
for comp in components:
all_even_neighbord = True
for id_node in comp:
if len(nodes[id_node].connected) % 2 == 0: # test if even neighbord
nodes[id_node].is_free = False
else:
nodes[id_node].is_free = True
all_even_neighbord = False
if all_even_neighbord:
for id_node in comp:
nodes[id_node].is_free = True
def optimizer(pl):
all_nodes = {} # it will contain all nodes
components = [] # list of connected node as a graph
# construct dict of connected all_nodes
all_nodes = list_to_nodes(pl)
components = get_comps(all_nodes)
set_free_vertices(components, all_nodes)
print("\n\nall_nodes:\n", all_nodes)
print("\n\nconnected_components:\n", components)
return pl
if __name__ == '__main__':
pl = [(355, 262, 0), (355, 262, 16777215), (300, 130, 16777215), (432, 75, 16777215), (487, 207, 16777215), (355, 262, 16777215), (355, 262, 0), (0, 435, 0), (0, 480, 16777215), (0, 300, 16777215), (135, 300, 16777215), (135, 570, 16777215), (135, 570, 16777215), (135, 300, 16777215), (135, 300, 0), (135, 300, 16777215), (225, 480, 16777215), (225, 480, 0), (510, 450, 0), (510, 450, 16777215), (600, 420, 16777215), (600, 300, 16777215), (720, 300, 16777215), (720, 420, 16777215), (810, 450, 16777215), (810, 450, 0)]
optimizer(pl)

View File

@ -81,7 +81,8 @@ import pdb
import ast
import redis
from libs3 import homographyp
from libs3 import homographyp, plotOptimizer as po
import numpy as np
import binascii
@ -223,43 +224,39 @@ class DAC(object):
while True:
#pdb.set_trace()
self.pl = po.optimizer(self.pl)
for indexpoint,currentpoint in enumerate(self.pl):
#print indexpoint, currentpoint
# transformations des point au format adapter au etherdream
xyc = [currentpoint[0],currentpoint[1],currentpoint[2]]
self.xyrgb = self.EtherPoint(xyc)
#print(self.xyrgb[2:])
rgb = (round(self.xyrgb[2:][0] *self.intred/100), round(self.xyrgb[2:][1] *self.intgreen/100), round(self.xyrgb[2:][2] *self.intblue/100))
#print("rgb :", rgb)
#round(*self.intred/100)
#round(*self.intgreen/100)
#round(*self.intblue/100)
yield self.xyrgb
##**//# ajout de point pour un tracer adapter
##**//delta_x, delta_y = self.xyrgb[0] - self.xyrgb_prev[0], self.xyrgb[1] - self.xyrgb_prev[1]
##**//#test adaptation selon longueur ligne
##**//if math.hypot(delta_x, delta_y) < 4000:
delta_x, delta_y = self.xyrgb[0] - self.xyrgb_prev[0], self.xyrgb[1] - self.xyrgb_prev[1]
##**// # For glitch art : decrease lsteps
##**// #l_steps = [ (1.0, 8)]
##**// l_steps = gstt.stepshortline
#test adaptation selon longueur ligne
if math.hypot(delta_x, delta_y) < 4000:
##**//else:
##**// # For glitch art : decrease lsteps
##**// #l_steps = [ (0.25, 3), (0.75, 3), (1.0, 10)]
##**// l_steps = gstt.stepslongline
# For glitch art : decrease lsteps
#l_steps = [ (1.0, 8)]
l_steps = gstt.stepshortline
##**//for e in l_steps:
##**// step = e[0]
else:
# For glitch art : decrease lsteps
#l_steps = [ (0.25, 3), (0.75, 3), (1.0, 10)]
l_steps = gstt.stepslongline
##**// for i in range(0,e[1]):
for e in l_steps:
step = e[0]
##**// self.xyrgb_step = (self.xyrgb_prev[0] + step*delta_x, self.xyrgb_prev[1] + step*delta_y) + rgb # + self.xyrgb_prev[2:]# + rgb
##**// #print(self.xyrgb_step)
##**// yield self.xyrgb_step
for i in range(0,e[1]):
self.xyrgb_step = (self.xyrgb_prev[0] + step*delta_x, self.xyrgb_prev[1] + step*delta_y) + rgb # + self.xyrgb_prev[2:]# + rgb
#print(self.xyrgb_step)
yield self.xyrgb_step
self.xyrgb_prev = self.xyrgb
##**//self.xyrgb_prev = self.xyrgb
def GetPoints(self, n):