forked from protonphoton/LJ
[fix] clitools many tweaks and changes batch
This commit is contained in:
parent
4b07dfc263
commit
371003fce2
201
clitools/filters/anaglyph.py
Executable file
201
clitools/filters/anaglyph.py
Executable file
@ -0,0 +1,201 @@
|
||||
#!/usr/bin/python3
|
||||
# -*- coding: utf-8 -*-
|
||||
# -*- mode: Python -*-
|
||||
|
||||
|
||||
'''
|
||||
|
||||
anaglyph
|
||||
v0.1.0
|
||||
|
||||
Attempts to create a valid 3D-glasses structure
|
||||
|
||||
LICENCE : CC
|
||||
|
||||
by cocoa
|
||||
|
||||
|
||||
'''
|
||||
from __future__ import print_function
|
||||
import argparse
|
||||
import ast
|
||||
import math
|
||||
import os
|
||||
import random
|
||||
import sys
|
||||
import time
|
||||
name = "filters::cycle"
|
||||
|
||||
maxDist = 300
|
||||
|
||||
argsparser = argparse.ArgumentParser(description="Redis exporter LJ")
|
||||
argsparser.add_argument("-x","--centerX",help="geometrical center X position",default=400,type=int)
|
||||
argsparser.add_argument("-y","--centerY",help="geometrical center Y position",default=400,type=int)
|
||||
argsparser.add_argument("-m","--min",help="Minimal displacement (default:2) ",default=1,type=int)
|
||||
argsparser.add_argument("-M","--max",help="Maximal displacement (default:20) ",default=5,type=int)
|
||||
argsparser.add_argument("-f","--fps",help="Frame Per Second",default=30,type=int)
|
||||
argsparser.add_argument("-v","--verbose",action="store_true",help="Verbose")
|
||||
|
||||
args = argsparser.parse_args()
|
||||
fps = args.fps
|
||||
minVal = args.min
|
||||
maxVal = args.max
|
||||
centerX = args.centerX
|
||||
centerY = args.centerY
|
||||
verbose = args.verbose
|
||||
|
||||
optimal_looptime = 1 / fps
|
||||
name = "filters::anaglyph"
|
||||
|
||||
def debug(*args, **kwargs):
|
||||
if( verbose == False ):
|
||||
return
|
||||
print(*args, file=sys.stderr, **kwargs)
|
||||
|
||||
def rgb2int(rgb):
|
||||
#debug(name,"::rgb2int rbg:{}".format(rgb))
|
||||
return int('0x%02x%02x%02x' % tuple(rgb),0)
|
||||
|
||||
def isValidColor( color, intensityColThreshold ):
|
||||
if color[0] + color[1] + color[2] > intensityColThreshold:
|
||||
return True
|
||||
return False
|
||||
|
||||
# These are paper colors
|
||||
red = (41,24,24)
|
||||
white = (95,95,95)
|
||||
blue = (0,41,64)
|
||||
|
||||
red = (86,0,0)
|
||||
blue = (0,55,86)
|
||||
white = (125,125,125)
|
||||
def anaglyph( pl ):
|
||||
|
||||
debug(name,'--------------- new loop ------------------')
|
||||
# We will send one list after the other to optimize color change
|
||||
blueList = list()
|
||||
redList = list()
|
||||
whiteList = list()
|
||||
out = []
|
||||
out1 = []
|
||||
out2 = []
|
||||
out3 = []
|
||||
|
||||
# The anaglyphic effect will be optained by :
|
||||
# * having close objects appear as white
|
||||
# * having distant objects appear as blue + red
|
||||
# * having in between objects appear as distanceDecreased(white) + blue + red
|
||||
for i, point in enumerate(pl):
|
||||
ref_x = point[0]-centerX
|
||||
ref_y = point[1]-centerY
|
||||
ref_color = point[2]
|
||||
angle = math.atan2( ref_x , ref_y )
|
||||
dist = ref_y / math.cos(angle)
|
||||
white_rvb = (0,0,0)
|
||||
blue_rvb = (0,0,0)
|
||||
red_rvb = (0,0,0)
|
||||
|
||||
# Calculate the point's spread factor (0.0 to 1.0)
|
||||
# The spread is high if the point is close to center
|
||||
"""
|
||||
dist = 0 : spread = 1.0
|
||||
dist = maxDist spread = 0.0
|
||||
"""
|
||||
if dist == 0:
|
||||
spread = 1.0
|
||||
else :
|
||||
spread =( maxDist - dist ) / maxDist
|
||||
if spread < 0.0:
|
||||
spread = 0.0
|
||||
|
||||
#debug(name,"dist:{} spread:{}".format(dist,spread))
|
||||
|
||||
# White color is high if spread is low, i.e. point away from center
|
||||
"""
|
||||
spread = 1.0 : white_c = 0.0
|
||||
spread = 0.0 : whice_c = 1.0
|
||||
"""
|
||||
if point[2] == 0:
|
||||
white_color = 0
|
||||
else:
|
||||
white_factor = 1.0 - math.pow(spread,0.5)
|
||||
white_rvb = tuple(map( lambda a: int(white_factor* a), white))
|
||||
white_color = rgb2int( white_rvb)
|
||||
#debug(name,"spread:{}\t white_rvb:{}\t white_color:{}".format(spread, white_rvb, white_color))
|
||||
|
||||
# Blue and Red colors are high if spread is high, i.e. close to center
|
||||
"""
|
||||
spread = 1.0 : red_c = 1.0
|
||||
spread = 0.0 : red_c = 0.0
|
||||
"""
|
||||
color_factor = math.pow(spread,1)
|
||||
if point[2] == 0:
|
||||
blue_color = 0
|
||||
red_color = 0
|
||||
else:
|
||||
blue_rvb = tuple(map( lambda a: int(color_factor * a), blue))
|
||||
blue_color = rgb2int( blue_rvb)
|
||||
red_rvb = tuple(map( lambda a: int(color_factor * a), red))
|
||||
red_color = rgb2int( red_rvb)
|
||||
|
||||
#debug(name,"color_factor:{}\t\t blue_color:{}\t\t red_color:{}".format(color_factor,blue_color,red_color))
|
||||
|
||||
# Blue-to-Red spatial spread is high when spread is high, i.e. point close to center
|
||||
"""
|
||||
spread = 1.0 : spatial_spread = maxVal
|
||||
spread = 0.0 : spatial_spread = minVal
|
||||
"""
|
||||
spatial_spread = minVal + spread * (maxVal - minVal)
|
||||
#debug(name,"spatial_spread:{}".format(spatial_spread))
|
||||
red_x = int(point[0] + spatial_spread)
|
||||
blue_x = int(point[0] - spatial_spread )
|
||||
red_y = int(point[1] )
|
||||
blue_y = int(point[1])
|
||||
|
||||
white_point = [point[0], point[1], white_color]
|
||||
blue_point = [blue_x,blue_y,blue_color]
|
||||
red_point = [red_x,red_y,red_color]
|
||||
|
||||
#debug(name,"white[x,y,c]:{}".format(white_point))
|
||||
#debug(name,"blue[x,y,c]:{}".format(blue_point))
|
||||
#debug(name,"red[x,y,c]:{}".format(red_point))
|
||||
# Do not append "black lines" i.e. a color where each composent is below X
|
||||
# if isValidColor(white_rvb, 150):
|
||||
# out1.append(white_point)
|
||||
# if isValidColor(blue_rvb, 50):
|
||||
# out2.append(blue_point)
|
||||
# if isValidColor(red_rvb, 30):
|
||||
# out3.append(red_point)
|
||||
out1.append(white_point)
|
||||
out2.append(blue_point)
|
||||
out3.append(red_point)
|
||||
|
||||
#debug(name,"source pl:{}".format(pl))
|
||||
debug(name,"whiteList:{}".format(out1))
|
||||
debug(name,"blueList:{}".format(out2))
|
||||
debug(name,"redList:{}".format(out3))
|
||||
return out3 + out2
|
||||
return out1 + out3 + out2
|
||||
#return out1 + out2 + out3
|
||||
|
||||
|
||||
|
||||
try:
|
||||
while True:
|
||||
start = time.time()
|
||||
line = sys.stdin.readline()
|
||||
if line == "":
|
||||
time.sleep(0.01)
|
||||
line = line.rstrip('\n')
|
||||
pointsList = ast.literal_eval(line)
|
||||
# Do the filter
|
||||
result = anaglyph( pointsList )
|
||||
print( result, flush=True )
|
||||
looptime = time.time() - start
|
||||
# debug(name+" looptime:"+str(looptime))
|
||||
if( looptime < optimal_looptime ):
|
||||
time.sleep( optimal_looptime - looptime)
|
||||
# debug(name+" micro sleep:"+str( optimal_looptime - looptime))
|
||||
except EOFError:
|
||||
debug(name+" break")# no more information
|
||||
|
@ -53,7 +53,6 @@ def kaleidoscope( pl ):
|
||||
quad1 = []
|
||||
# Iterate trough the segments
|
||||
for i in range( 0, len(pl) ):
|
||||
|
||||
|
||||
#debug(name+" point #", i)
|
||||
currentpoint = cp = pl[i]
|
||||
@ -74,8 +73,8 @@ def kaleidoscope( pl ):
|
||||
#debug(name+" rect: ", rect,"curr",currentpoint,"next",nextpoint )
|
||||
|
||||
# Enumerate the points in rectangle to see
|
||||
# how many right / wrong there are to add or skip early
|
||||
#
|
||||
# how many right / wrong there are
|
||||
# either to add or skip early
|
||||
for iterator, p in enumerate(rect):
|
||||
if p[0] >= centerX and p[1] >= centerY:
|
||||
right += 1
|
||||
@ -118,7 +117,7 @@ def kaleidoscope( pl ):
|
||||
#print("on x axis, v=",str(v)," and absnewY=",str(absnewY))
|
||||
crossY = [( absnewY*v[0] + cy ),( absnewY*v[1]+cy ), nc]
|
||||
# Inject in order
|
||||
# If current is valid, Add
|
||||
# If current point is the quadrant, add it
|
||||
if cx >= centerX and cy >= centerY :
|
||||
quad1.append( currentpoint )
|
||||
# If absnewX smaller, it is closest to currentPoint
|
||||
@ -128,6 +127,9 @@ def kaleidoscope( pl ):
|
||||
else :
|
||||
if None != crossY : quad1.append( crossY )
|
||||
if None != crossX : quad1.append( crossX )
|
||||
# Add a black point at the end
|
||||
#lastQuad1Point = quad1[-1]
|
||||
#quad1.append( [lastQuad1Point[0],lastQuad1Point[1],0] )
|
||||
|
||||
## Stage 2 : Mirror points
|
||||
#
|
||||
@ -144,10 +146,10 @@ def kaleidoscope( pl ):
|
||||
point = quad3[iterator]
|
||||
quad4.append([ 2*centerX - point[0], point[1], point[2] ])
|
||||
|
||||
debug(name+" quad1:",quad1)
|
||||
#debug(name+" quad1:",quad1)
|
||||
#debug(name+" quad2:", quad2 )
|
||||
debug(name+" quad3:", quad3 )
|
||||
debug(name+" quad4:", quad4 )
|
||||
#debug(name+" quad3:", quad3 )
|
||||
#debug(name+" quad4:", quad4 )
|
||||
return quad3+quad4
|
||||
|
||||
try:
|
||||
|
@ -34,16 +34,18 @@ def debug(*args, **kwargs):
|
||||
if( verbose == False ):
|
||||
return
|
||||
print(*args, file=sys.stderr, **kwargs)
|
||||
def now():
|
||||
return time.time() * 1000
|
||||
def msNow():
|
||||
return time.time()
|
||||
|
||||
# The list of available modes and the redis keys they need
|
||||
# The list of available modes => redis keys each requires to run
|
||||
oModeList = {
|
||||
"rms_noise": ["rms"],
|
||||
"rms_size": ["rms"],
|
||||
"bpm_size": ["bpm"]
|
||||
"bpm_size": ["bpm"],
|
||||
"bpm_detect_size": ["bpm","bpm_delay","bpm_sample_interval","beats"]
|
||||
}
|
||||
CHAOS = 1
|
||||
REDISLATENCY = 30
|
||||
REDIS_FREQ = 300
|
||||
|
||||
# General Args
|
||||
@ -58,17 +60,19 @@ argsparser.add_argument("-x","--centerX",help="geometrical center X position",de
|
||||
argsparser.add_argument("-y","--centerY",help="geometrical center Y position",default=400,type=int)
|
||||
argsparser.add_argument("-f","--fps",help="Frame Per Second",default=30,type=int)
|
||||
# Modes And Common Modes Parameters
|
||||
argsparser.add_argument("-l","--redisLatency",help="Latency in ms to substract. Default:{}".format(REDISLATENCY),default=REDISLATENCY,type=float)
|
||||
argsparser.add_argument("-m","--modelist",required=True,help="Comma separated list of modes to use from: {}".format("i, ".join(oModeList.keys())),type=str)
|
||||
argsparser.add_argument("--chaos",help="How much disorder to bring. High value = More chaos. Default {}".format(CHAOS), default=CHAOS, type=str)
|
||||
|
||||
args = argsparser.parse_args()
|
||||
ip = args.ip
|
||||
port = args.port
|
||||
redisFreq = args.redis_freq
|
||||
redisFreq = args.redis_freq / 1000
|
||||
verbose = args.verbose
|
||||
fps = args.fps
|
||||
centerX = args.centerX
|
||||
centerY = args.centerY
|
||||
redisLatency = args.redisLatency
|
||||
chaos = float(args.chaos)
|
||||
optimal_looptime = 1 / fps
|
||||
|
||||
@ -82,33 +86,127 @@ for mode in modeList:
|
||||
redisKeys = list(set(redisKeys))
|
||||
debug(name,"Redis Keys:{}".format(redisKeys))
|
||||
redisData = {}
|
||||
redisLastHit = now() - redisFreq
|
||||
redisLastHit = msNow() - 99999
|
||||
r = redis.Redis(
|
||||
host=ip,
|
||||
port=port)
|
||||
|
||||
# Records the last bpm
|
||||
last_bpm = time.time()
|
||||
tsLastBeat = time.time()
|
||||
|
||||
def gauss(x, mu, sigma):
|
||||
return( math.exp(-math.pow((x-mu),2)/(2*math.pow(sigma,2))/math.sqrt(2*math.pi*math.pow(sigma,2))))
|
||||
|
||||
previousPTTL = 0
|
||||
tsNextBeatsList = []
|
||||
def bpmDetect( ):
|
||||
"""
|
||||
An helper to compute the next beat time in milliseconds
|
||||
Returns True if the cache was updated
|
||||
"""
|
||||
global tsNextBeatsList
|
||||
global previousPTTL
|
||||
global redisLastHit
|
||||
global redisLatency
|
||||
|
||||
# Get the redis PTTL value for bpm
|
||||
PTTL = redisData["bpm_pttl"]
|
||||
|
||||
def bpm_size( pl ):
|
||||
global last_bpm
|
||||
# Skip early if PTTL < 0
|
||||
if PTTL < 0 :
|
||||
debug(name,"bpmDetect skip detection : PTTL expired for 'bpm' key")
|
||||
return False
|
||||
|
||||
# Skip early if the record hasn't been rewritten
|
||||
if PTTL <= previousPTTL :
|
||||
previousPTTL = PTTL
|
||||
#debug(name,"bpmDetect skip detection : {} <= {}".format(PTTL, previousPTTL))
|
||||
return False
|
||||
debug(name,"bpmDetect running detection : {} > {}".format(PTTL, previousPTTL))
|
||||
previousPTTL = PTTL
|
||||
|
||||
# Skip early if beat list is empty
|
||||
beatsList = ast.literal_eval(redisData["beats"])
|
||||
tsNextBeatsList = []
|
||||
if( len(beatsList) == 0 ):
|
||||
return True
|
||||
|
||||
# Read from redis
|
||||
bpm = float(redisData["bpm"])
|
||||
# Milliseconds ber beat
|
||||
milliSecondsPerBeat = int(60 / bpm * 1000)
|
||||
msBpmDelay = float(redisData["bpm_delay"])
|
||||
samplingInterval = float(redisData["bpm_sample_interval"])
|
||||
|
||||
# Calculate some interpolations
|
||||
lastBeatTiming = float(beatsList[len(beatsList) - 1])
|
||||
msPTTLDelta = 2 * samplingInterval - float(PTTL)
|
||||
sPerBeat = 60 / bpm
|
||||
lastBeatDelay = msBpmDelay - lastBeatTiming*1000 + msPTTLDelta
|
||||
countBeatsPast = math.floor( (lastBeatDelay / 1000) / sPerBeat)
|
||||
#debug(name,"bpmDetect lastBeatTiming:{}\tmsPTTLDelta:{}\tsPerBeat:{}".format(lastBeatTiming,msPTTLDelta,sPerBeat))
|
||||
#debug(name,"lastBeatDelay:{}\t countBeatsPast:{}".format(lastBeatDelay, countBeatsPast))
|
||||
for i in range( countBeatsPast, 1000):
|
||||
beatTime = i * sPerBeat - lastBeatTiming
|
||||
if beatTime < 0:
|
||||
continue
|
||||
if beatTime * 1000 > 2 * samplingInterval :
|
||||
break
|
||||
#debug(name, "bpmDetect beat add beatTime:{} redisLastHit:{}".format(beatTime, redisLastHit))
|
||||
tsNextBeatsList.append( redisLastHit + beatTime - redisLatency/1000)
|
||||
debug(name, "bpmDetect new tsNextBeatsList:{}".format(tsNextBeatsList))
|
||||
|
||||
return True
|
||||
|
||||
def bpm_detect_size( pl ):
|
||||
bpmDetect()
|
||||
|
||||
# Find the next beat in the list
|
||||
tsNextBeat = 0
|
||||
|
||||
now = time.time()
|
||||
msNearestBeat = None
|
||||
msRelativeNextBTList = list(map( lambda a: abs(now - a) * 1000, tsNextBeatsList))
|
||||
msToBeat = min( msRelativeNextBTList)
|
||||
|
||||
#debug(name,"bpm_detect_size msRelativeNextBTList:{} msToBeat:{}".format(msRelativeNextBTList,msToBeat))
|
||||
# Calculate the intensity based on bpm coming/leaving
|
||||
# The curb is a gaussian
|
||||
mu = math.sqrt(milliSecondsPerBeat)
|
||||
milliTimeToLastBeat = (time.time() - last_bpm) * 1000
|
||||
milliTimeToNextBeat = (milliSecondsPerBeat - milliTimeToLastBeat)
|
||||
intensity = gauss( milliTimeToNextBeat, 0 , mu)
|
||||
debug(name,"bpm_size","milliSecondsPerBeat:{}\tmu:{}".format(milliSecondsPerBeat, mu))
|
||||
debug(name,"bpm_size","milliTimeToLastBeat:{}\tmilliTimeToNextBeat:{}\tintensity:{}".format(milliTimeToLastBeat, milliTimeToNextBeat, intensity))
|
||||
if milliTimeToNextBeat <= 0 :
|
||||
last_bpm = time.time()
|
||||
mu = 15
|
||||
intensity = gauss( msToBeat, 0 , mu)
|
||||
#debug(name,"bpm_size","mu:{}\t msToBeat:{}\tintensity:{}".format(mu, msToBeat, intensity))
|
||||
if msToBeat < 20:
|
||||
debug(name,"bpm_detect_size kick:{}".format(msToBeat))
|
||||
pass
|
||||
for i, point in enumerate(pl):
|
||||
ref_x = point[0]-centerX
|
||||
ref_y = point[1]-centerY
|
||||
#debug(name,"In new ref x:{} y:{}".format(point[0]-centerX,point[1]-centerY))
|
||||
angle=math.atan2( point[0] - centerX , point[1] - centerY )
|
||||
l = ref_y / math.cos(angle)
|
||||
new_l = l * intensity
|
||||
#debug(name,"bpm_size","angle:{} l:{} new_l:{}".format(angle,l,new_l))
|
||||
new_x = math.sin(angle) * new_l + centerX
|
||||
new_y = math.cos(angle) * new_l + centerY
|
||||
#debug(name,"x,y:({},{}) x',y':({},{})".format(point[0],point[1],new_x,new_y))
|
||||
pl[i][0] = new_x
|
||||
pl[i][1] = new_y
|
||||
#debug( name,"bpm_detect_size output:{}".format(pl))
|
||||
return( pl );
|
||||
|
||||
def bpm_size( pl ):
|
||||
global tsLastBeat
|
||||
bpm = float(redisData["bpm"])
|
||||
# msseconds ber beat
|
||||
msPerBeat = int(60 / bpm * 1000)
|
||||
# Calculate the intensity based on bpm coming/leaving
|
||||
# The curb is a gaussian
|
||||
mu = math.sqrt(msPerBeat)
|
||||
msTimeToLastBeat = (time.time() - tsLastBeat) * 1000
|
||||
msTimeToNextBeat = (msPerBeat - msTimeToLastBeat)
|
||||
intensity = gauss( msTimeToNextBeat, 0 , mu)
|
||||
debug(name,"bpm_size","msPerBeat:{}\tmu:{}".format(msPerBeat, mu))
|
||||
debug(name,"bpm_size","msTimeToLastBeat:{}\tmsTimeToNextBeat:{}\tintensity:{}".format(msTimeToLastBeat, msTimeToNextBeat, intensity))
|
||||
if msTimeToNextBeat <= 0 :
|
||||
tsLastBeat = time.time()
|
||||
for i, point in enumerate(pl):
|
||||
ref_x = point[0]-centerX
|
||||
ref_y = point[1]-centerY
|
||||
@ -158,21 +256,30 @@ def rms_noise( pl ):
|
||||
return pl
|
||||
|
||||
|
||||
def updateRedis():
|
||||
def refreshRedis():
|
||||
global redisLastHit
|
||||
global redisData
|
||||
for key in redisKeys:
|
||||
redisData[key] = r.get(key).decode('ascii')
|
||||
debug("name","updateRedis key:{} value:{}".format(key,redisData[key]))
|
||||
if key == 'bpm':
|
||||
redisData['bpm_ttl'] = r.pttl(key)
|
||||
debug(name,"redisData:{}".format(redisData))
|
||||
# Skip if cache is sufficent
|
||||
diff = msNow() - redisLastHit
|
||||
if diff < redisFreq :
|
||||
#debug(name, "refreshRedis not updating redis, {} < {}".format(diff, redisFreq))
|
||||
pass
|
||||
else:
|
||||
#debug(name, "refreshRedis updating redis, {} > {}".format(diff, redisFreq))
|
||||
redisLastHit = msNow()
|
||||
for key in redisKeys:
|
||||
redisData[key] = r.get(key).decode('ascii')
|
||||
#debug(name,"refreshRedis key:{} value:{}".format(key,redisData[key]))
|
||||
# Only update the TTLs
|
||||
if 'bpm' in redisKeys:
|
||||
redisData['bpm_pttl'] = r.pttl('bpm')
|
||||
#debug(name,"refreshRedis key:bpm_ttl value:{}".format(redisData["bpm_pttl"]))
|
||||
#debug(name,"redisData:{}".format(redisData))
|
||||
return True
|
||||
|
||||
try:
|
||||
while True:
|
||||
# it is time to query redis
|
||||
if now() - redisLastHit > redisFreq:
|
||||
updateRedis()
|
||||
refreshRedis()
|
||||
start = time.time()
|
||||
line = sys.stdin.readline()
|
||||
if line == "":
|
||||
|
@ -34,7 +34,7 @@ argsparser = argparse.ArgumentParser(description="tunnel generator")
|
||||
argsparser.add_argument("-c","--color",help="Color",default=65280,type=int)
|
||||
argsparser.add_argument("-f","--fps",help="Frame Per Second",default=30,type=int)
|
||||
argsparser.add_argument("-i","--interval",help="point per shape interval",default=30,type=int)
|
||||
argsparser.add_argument("-m","--max-size",help="maximum size for objects",default=500,type=int)
|
||||
argsparser.add_argument("-m","--max-size",help="maximum size for objects",default=400,type=int)
|
||||
argsparser.add_argument("-r","--randomize",help="center randomization",default=5,type=int)
|
||||
argsparser.add_argument("-s","--speed",help="point per frame progress",default=3,type=int)
|
||||
argsparser.add_argument("-v","--verbose",action="store_true",help="Verbose output")
|
||||
@ -77,14 +77,19 @@ class polylineGenerator( object ):
|
||||
self.polylineList = [[0,[currentCenter[0],currentCenter[1]]]]
|
||||
self.buf = []
|
||||
|
||||
def init(self):
|
||||
finished = False
|
||||
while not finished:
|
||||
finished = self.increment()
|
||||
debug(name,"init done:{}".format(self.polylineList))
|
||||
def draw( self ):
|
||||
self.buf = []
|
||||
for it_pl, infoList in enumerate(self.polylineList):
|
||||
size = infoList[0]
|
||||
center = infoList[1]
|
||||
for it_sqr, point in enumerate(shape):
|
||||
x = center[0] + point[0]*size
|
||||
y = center[1] + point[1]*size
|
||||
x = int( center[0] + point[0]*size )
|
||||
y = int( center[1] + point[1]*size )
|
||||
# Add an invisible point in first location
|
||||
if 0 == it_sqr:
|
||||
self.buf.append([x,y,0])
|
||||
@ -114,22 +119,43 @@ class polylineGenerator( object ):
|
||||
speed = origSpeed
|
||||
elif speed > (origSpeed + randomize / 2) :
|
||||
speed = origSpeed + randomize / 2
|
||||
debug(name, "currentCenter:{} speed:{}".format(currentCenter,speed))
|
||||
#debug(name, "currentCenter:{} speed:{}".format(currentCenter,speed))
|
||||
|
||||
for i, shapeInfo in enumerate(self.polylineList):
|
||||
size = shapeInfo[0]
|
||||
size += speed
|
||||
# Augment speed with size
|
||||
"""
|
||||
size = 0 : += sqrt(speed)
|
||||
size = half max size : +=speed
|
||||
|
||||
"""
|
||||
if size < max_size / 4:
|
||||
size += math.pow(speed, 0.1)
|
||||
elif size < max_size / 3:
|
||||
size += math.pow(speed, 0.25)
|
||||
elif size < max_size / 2:
|
||||
size += math.pow(speed, 0.5)
|
||||
else:
|
||||
size += math.pow(speed, 1.25)
|
||||
if size < min_size : min_size = size
|
||||
if size > max_size : delList.append(i)
|
||||
self.polylineList[i][0] = size
|
||||
for i in delList:
|
||||
del self.polylineList[i]
|
||||
if min_size >= interval: self.polylineList.append([0,[currentCenter[0],currentCenter[1]]])
|
||||
#debug(name, "polyline:",self.polylineList)
|
||||
if min_size >= interval:
|
||||
debug(name, "new shape")
|
||||
self.polylineList.append([0,[currentCenter[0],currentCenter[1]]])
|
||||
|
||||
# Return True if we delete a shape
|
||||
|
||||
if len(delList):
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
pgen = polylineGenerator()
|
||||
|
||||
pgen.init()
|
||||
|
||||
while True:
|
||||
start = time.time()
|
||||
@ -140,7 +166,7 @@ while True:
|
||||
# send
|
||||
pl = pgen.draw()
|
||||
print(pl, flush=True)
|
||||
debug(name,"output:{}".format(pl))
|
||||
#debug(name,"output:{}".format(pl))
|
||||
|
||||
looptime = time.time() - start
|
||||
if( looptime < optimal_looptime ):
|
||||
|
Loading…
Reference in New Issue
Block a user