LJ/clients/planetarium/main.py

521 lines
16 KiB
Python
Raw Normal View History

2019-01-28 13:18:19 +00:00
# coding=UTF-8
'''
2019-01-31 03:14:54 +00:00
Multi Laser planetarium in python3 for LJ.
v0.01
Sam Neurohack
Accuracy tested against apparent data and starchart at https://www.calsky.com/cs.cgi?cha=7&sec=3&sub=2
Remember to set the same observer position and time.
See Readme for more information
2019-01-28 13:18:19 +00:00
2019-01-30 02:39:56 +00:00
Todo:
- Validate aa2radec() with online calculator. Rewrite it to remove need for Astropy.
- Findout how to use OSC in python 3.
- Code WebUI page.
- UpdateStars() in each laser sky. Get magnitude. See UpdateSolar for example.
2019-01-31 03:14:54 +00:00
- All Draw operations should also check visibility in the given laser altitude range.
2019-01-30 02:39:56 +00:00
- Rewrite CityPosition() with proper search in a python dictionnary.
- Better python code. Better varuable to understand easily Update() methods.
2019-01-28 13:18:19 +00:00
LICENCE : CC
2019-01-31 03:14:54 +00:00
Remember : LJ will automatically warp geometry according to alignement data. See webUI.
2019-01-28 13:18:19 +00:00
'''
2019-01-31 03:14:54 +00:00
import redis
2019-01-28 13:18:19 +00:00
import lj3
import numpy as np
import math,time
from astropy.coordinates import SkyCoord, EarthLocation, AltAz
from astropy import units as u
from astropy.time import Time
from skyfield.api import Star, load, Topos,Angle
from skyfield.data import hipparcos
2019-01-30 02:39:56 +00:00
import json
2019-01-28 13:18:19 +00:00
'''
is_py2 = sys.version[0] == '2'
if is_py2:
from Queue import Queue
else:
from queue import Queue
'''
#
# Arguments handler
#
import argparse
print ("")
print ("Arguments parsing if needed...")
argsparser = argparse.ArgumentParser(description="Planetarium for LJ")
argsparser.add_argument("-r","--redisIP",help="IP of the Redis server used by LJ (127.0.0.1 by default) ",type=str)
argsparser.add_argument("-c","--client",help="LJ client number (0 by default)",type=int)
argsparser.add_argument("-l","--laser",help="Laser number to be displayed (0 by default)",type=int)
2019-01-31 03:14:54 +00:00
argsparser.add_argument("-d","--debug",help="Verbosity level (0 by default)",type=int)
2019-01-30 02:39:56 +00:00
#argsparser.add_argument("-n","--name",help="City Name of the observer",type=str)
#argsparser.add_argument("-r","--redisIP",help="Country code of the observer ",type=str)
2019-01-28 13:18:19 +00:00
args = argsparser.parse_args()
if args.client:
ljclient = args.client
else:
ljclient = 0
if args.laser:
2019-01-30 02:39:56 +00:00
lasernumber = args.laser
2019-01-28 13:18:19 +00:00
else:
2019-01-30 02:39:56 +00:00
lasernumber = 0
2019-01-28 13:18:19 +00:00
2019-01-31 03:14:54 +00:00
if args.debug:
debug = args.laser
else:
debug = 0
2019-01-28 13:18:19 +00:00
# Redis Computer IP
if args.redisIP != None:
redisIP = args.redisIP
else:
redisIP = '127.0.0.1'
lj3.Config(redisIP,ljclient)
#
# Inits Laser
#
fov = 256
viewer_distance = 2.2
width = 450
height = 450
centerX = width / 2
centerY = height / 2
samparray = [0] * 100
# (x,y,color in integer) 65280 is color #00FF00
# Green rectangular shape :
pl0 = [(100,300,65280),(200,300,65280),(200,200,65280),(100,200,65280),(100,300,65280)]
2019-01-30 02:39:56 +00:00
2019-01-28 13:18:19 +00:00
# If you want to use rgb for color :
def rgb2int(r,g,b):
return int('0x%02x%02x%02x' % (r,g,b),0)
white = rgb2int(255,255,255)
red = rgb2int(255,0,0)
blue = rgb2int(0,0,255)
green = rgb2int(0,255,0)
2019-01-30 02:39:56 +00:00
2019-01-28 13:18:19 +00:00
def Proj(x,y,z,angleX,angleY,angleZ):
rad = angleX * math.pi / 180
cosa = math.cos(rad)
sina = math.sin(rad)
y2 = y
y = y2 * cosa - z * sina
z = y2 * sina + z * cosa
rad = angleY * math.pi / 180
cosa = math.cos(rad)
sina = math.sin(rad)
z2 = z
z = z2 * cosa - x * sina
x = z2 * sina + x * cosa
rad = angleZ * math.pi / 180
cosa = math.cos(rad)
sina = math.sin(rad)
x2 = x
x = x2 * cosa - y * sina
y = x2 * sina + y * cosa
""" Transforms this 3D point to 2D using a perspective projection. """
factor = fov / (viewer_distance + z)
x = x * factor + centerX
y = - y * factor + centerY
return (x,y)
#
2019-01-30 02:39:56 +00:00
# All the coordinates base functions
2019-01-28 13:18:19 +00:00
#
2019-01-30 02:39:56 +00:00
'''
To minize number of sky objects coordinates conversion : Change planetarium FOV in Ra Dec to select objects
(planets, hipparcos,..). Then get those objects in AltAz coordinates.
2019-01-31 03:14:54 +00:00
aa2radec use Astropy to compute Equatorial Right Ascension and Declinaison coordinates from given observator Altitude and Azimuth.
2019-01-30 02:39:56 +00:00
Example ra,dec = aa2radec( azimuth = 0, altitude = 90, lati = 48.85341, longi = 2.3488, elevation = 100, t =AstroPyNow )
with AstroPyNow = Time.now()
'''
2019-01-31 03:14:54 +00:00
def aa2radec(azimuth, altitude, t):
#AstrObserver = EarthLocation(lat=lati * u.deg, lon=longi *u.deg, height= elevation*u.m,)
ObjectCoord = SkyCoord(alt = altitude * u.deg, az = azimuth *u.deg, obstime = t, frame = 'altaz', location = AstrObserver)
2019-01-30 02:39:56 +00:00
#print("icrs",ObjectCoord.icrs)
#print("ICRS Right Ascension", ObjectCoord.icrs.ra)
#print("ICRS Declination", ObjectCoord.icrs.dec)
2019-01-28 13:18:19 +00:00
return ObjectCoord.icrs.ra.degree, ObjectCoord.icrs.dec.degree
2019-01-30 02:39:56 +00:00
2019-01-31 03:14:54 +00:00
# Use Skyfield to compute given object apparent positions (ra,dec,alt,az) and distance from given gps earth position (in decimal degrees) at UTC time (in skyfield format)
def EarthObjPosition(object, t):
2019-01-28 13:18:19 +00:00
2019-01-30 02:39:56 +00:00
#print (object, 'at', t.utc_iso())
2019-01-31 03:14:54 +00:00
#SkyObserver = earth + Topos(gpslat, gpslong)
2019-01-30 02:39:56 +00:00
astrometric = earth.at(t).observe(object)
ra, dec, distance = astrometric.radec()
'''
print("Right ascencion",ra)
print("RA in degree",ra._degrees)
print("RA in radians",ra.radians)
print("declinaison",dec)
print (distance)
'''
2019-01-31 03:14:54 +00:00
ApparentPosition = SkyObserver.at(t).observe(object).apparent()
#alt, az, distance = ApparentPosition.altaz('standard')
alt, az, distance = ApparentPosition.altaz()
2019-01-30 02:39:56 +00:00
'''
print("UTC",t.utc_iso())
print ("Altitude",alt)
print("Altitude in radians",alt.radians)
print("Altitude in degrees",alt.degrees)
print("Altitude in dms",alt.dms(0))
print("Altitude in signed_dms",alt.signed_dms(0))
print("Azimuth", az.dstr())
print ("Distance from position", distance)
'''
2019-01-31 03:14:54 +00:00
# If you want degree hours min : print (object,alt,az)
# or you can do return ra._degrees, dec, alt.degrees, az, distance
return alt.degrees, az.degrees, distance
2019-01-30 02:39:56 +00:00
# Add Radec coordinates for all lasers from user defined Altaz coordinates in LaserSkies variable at given earth position and time.
# LaserSkies : [LeftAzi, RightAzi, TopAlt, BotAlt, LeftRa, RightRa, TopDec, BottomDec]
# 0 1 2 3 4 5 6 7
2019-01-31 03:14:54 +00:00
def RadecSkies(LaserSkies, AstroSkyTime):
2019-01-30 02:39:56 +00:00
print()
print("Converting", lasernumber, "LaserSkies limits in Right Ascension & Declination (radec) coordinates ")
for laser in range(lasernumber):
# Left top point
2019-01-31 03:14:54 +00:00
LaserSkies[laser][4],LaserSkies[laser][6] = aa2radec(azimuth = LaserSkies[laser][0], altitude =LaserSkies[laser][2], t =AstroSkyTime)
2019-01-30 02:39:56 +00:00
# Right Bottom point
2019-01-31 03:14:54 +00:00
LaserSkies[laser][5],LaserSkies[laser][7] = aa2radec(azimuth = LaserSkies[laser][1], altitude =LaserSkies[laser][3], t =AstroSkyTime)
if debug > 0:
print(LaserSkies)
2019-01-30 02:39:56 +00:00
print ("Done.")
2019-01-28 13:18:19 +00:00
def azimuth2scrX(leftAzi,rightAzi,s):
2019-01-31 03:14:54 +00:00
a1, a2 = leftAzi, rightAzi
2019-01-28 13:18:19 +00:00
b1, b2 = -width/2, width/2
return b1 + ((s - a1) * (b2 - b1) / (a2 - a1))
2019-01-30 02:39:56 +00:00
2019-01-28 13:18:19 +00:00
2019-01-30 02:39:56 +00:00
2019-01-28 13:18:19 +00:00
def altitude2scrY(topAlti,botAlti,s):
a1, a2 = botAlti, topAlti
2019-01-31 03:14:54 +00:00
b1, b2 = -height/2, height/2
2019-01-28 13:18:19 +00:00
return b1 + ((s - a1) * (b2 - b1) / (a2 - a1))
2019-01-30 02:39:56 +00:00
#
# Solar System
#
2019-01-31 03:14:54 +00:00
SolarObjectShape = [(-50,30), (-30,-30), (30,-30), (10,30), (-50,30)]
2019-01-30 02:39:56 +00:00
def LoadSolar():
global planets, SolarObjects, earth
print("Loading Solar System (de421)...")
# de421.bps https://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/planets/a_old_versions/de421.bsp
planets = load('data/de421.bsp')
earth = planets['earth']
print('Loaded.')
# de421 objects
# [Object name, object altitude, object azimuth]
SolarObjects = [['MERCURY',0.0, 0.0], ['VENUS', 0.0, 0.0], ['JUPITER BARYCENTER', 0.0, 0.0], ['SATURN BARYCENTER', 0.0, 0.0], ['URANUS BARYCENTER', 0.0, 0.0], ['NEPTUNE BARYCENTER', 0.0, 0.0], ['PLUTO BARYCENTER', 0.0, 0.0], ['SUN', 0.0, 0.0], ['MOON', 0.0, 0.0], ['MARS', 0.0, 0.0]]
def UpdateSolar():
global SolarObjects
2019-01-31 03:14:54 +00:00
# Compute Alt Az coordinates for all solar objects for obsehttps://www.startpage.com/do/searchrver.
2019-01-30 02:39:56 +00:00
for number,object in enumerate(SolarObjects):
#print(object[0],number)
2019-01-31 03:14:54 +00:00
SolarObjects[number][1], SolarObjects[number][2], distance = EarthObjPosition(planets[object[0]],SkyfieldTime)
if debug > 0:
PrintSolar()
2019-01-30 02:39:56 +00:00
2019-01-31 03:14:54 +00:00
def PrintSolar():
2019-01-30 02:39:56 +00:00
for number,object in enumerate(SolarObjects):
2019-01-31 03:14:54 +00:00
print (SolarObjects[number][0],"is at (alt,az)",SolarObjects[number][1],SolarObjects[number][2])
2019-01-30 02:39:56 +00:00
2019-01-31 03:14:54 +00:00
# Draw the SolarShapeObject for any Solar object is in the laser Sky
def DrawSolar(laser):
for number,object in enumerate(SolarObjects):
2019-01-30 02:39:56 +00:00
2019-01-31 03:14:54 +00:00
# Solar object is in given laser sky azimuth and altitude range ?
if LaserSkies[laser][0] < SolarObjects[number][2] < LaserSkies[laser][1] and LaserSkies[laser][3] < SolarObjects[number][1] < LaserSkies[laser][2]:
#print ("drawing",SolarObjects[number][0],SolarObjects[number][1],SolarObjects[number][2],"on laser",laser)
lj3.rPolyLineOneColor(SolarObjectShape, c = white, PL = laser, closed = False, xpos = azimuth2scrX(LaserSkies[laser][0],LaserSkies[laser][1],SolarObjects[number][2]), ypos = altitude2scrY(LaserSkies[laser][2],LaserSkies[laser][3],SolarObjects[number][1]), resize = 2, rotx =0, roty =0 , rotz=0)
2019-01-30 02:39:56 +00:00
#
2019-01-31 03:14:54 +00:00
# Stars
2019-01-30 02:39:56 +00:00
#
2019-01-31 03:14:54 +00:00
StarsObjectShape = [(-50,30), (-30,-30), (30,-30), (10,30), (-50,30)]
2019-01-30 02:39:56 +00:00
def LoadHipparcos(ts):
global hipdata
print("Loading hipparcos catalog...")
#hipparcosURL = 'ftp://cdsarc.u-strasbg.fr/cats/I/239/hip_main.dat.gz'
hipparcosURL = 'data/hip_main.dat.gz'
with load.open(hipparcosURL) as f:
hipdata = hipparcos.load_dataframe(f)
print("Loaded.")
hipparcos_epoch = ts.tt(1991.25)
# CODE IMPORTED HERE FROM TESTS. NEEDS TO ADAPT
# Star selection
def StarSelect():
hipparcos_epoch = ts.tt(1991.25)
barnards_star = Star.from_dataframe(hipdata.loc[87937])
polaris = Star.from_dataframe(hipdata.loc[11767])
print()
print ("Selecting sky portion")
hipdatafilt = hipdata[hipdata['magnitude'] <= 2.5]
print(('After filtering, there are {} stars with magnitude <= 2.5'.format(len(hipdatafilt))))
bright_stars = Star.from_dataframe(hipdatafilt)
print (hipdatafilt)
#print (bright_stars)
t = ts.utc(2018, 9, 3)
'''
Observer = earth + Topos(gpslat, gpslong)
ApparentPosition = Observer.at(t).observe(bright_stars).apparent()
alt, az, distance = ApparentPosition.altaz('standard')
print(('Now there are {} azimuth'.format(len(az))))
print(('and {} altitute'.format(len(alt))))
'''
2019-01-28 13:18:19 +00:00
2019-01-30 02:39:56 +00:00
astrometric = earth.at(t).observe(bright_stars)
ra, dec, distance = astrometric.radec()
print(('Now there are {} right ascensions'.format(len(ra.hours))))
print(('and {} declinations'.format(len(dec.degrees))))
Observer = earth + Topos(gpslat, gpslong)
AP = Observer.at(t).observe(bright_stars)
print ("AP",AP.apparent())
2019-01-31 03:14:54 +00:00
def UpdateStars():
global StarsObjects
# Compute Alt Az coordinates for all solar objects for obsehttps://www.startpage.com/do/searchrver.
for number,object in enumerate(StarsObjects):
#print(object[0],number)
StarsObjects[number][1], StarsObjects[number][2], distance = EarthObjPosition(planets[object[0]],SkyfieldTime)
if debug > 0:
PrintSolar()
def PrintStars():
for number,object in enumerate(StarsObjects):
print (StarsObjects[number][0],"is at (alt,az)",StarsObjects[number][1],StarsObjects[number][2])
def DrawStars(laser):
for number,object in enumerate(StarsObjects):
# Solar object is in given laser sky azimuth and altitude range ?
if LaserSkies[laser][0] < StarsObjects[number][2] < LaserSkies[laser][1] and LaserSkies[laser][3] < StarsObjects[number][1] < LaserSkies[laser][2]:
#print ("drawing",StarsObjects[number][0],StarsObjects[number][1],StarsObjects[number][2],"on laser",laser)
lj3.rPolyLineOneColor(StarsObjectshape, c = white, PL = laser, closed = False, xpos = azimuth2scrX(LaserSkies[laser][0],LaserSkies[laser][1],StarsObjects[number][2]), ypos = altitude2scrY(LaserSkies[laser][2],LaserSkies[laser][3],StarsObjects[number][1]), resize = 2, rotx =0, roty =0 , rotz=0)
2019-01-28 13:18:19 +00:00
2019-01-31 03:14:54 +00:00
#
2019-01-30 02:39:56 +00:00
# On Earth Gps positions
2019-01-31 03:14:54 +00:00
# from https://github.com/lutangar/cities.json
2019-01-30 02:39:56 +00:00
#
def LoadCities():
2019-01-31 03:14:54 +00:00
global world
2019-01-30 02:39:56 +00:00
print("Loading World Cities GPS position...")
f=open("data/cities.json","r")
s = f.read()
2019-01-31 03:14:54 +00:00
world = json.loads(s)
2019-01-30 02:39:56 +00:00
print("Loaded.")
2019-01-31 03:14:54 +00:00
# Get longitude and latitude of given City in given country. Need to better understand python dictionnaries.
2019-01-30 02:39:56 +00:00
def CityPositiion(cityname, countrycode):
2019-01-31 03:14:54 +00:00
for city in range(len(world['cities'])):
if world['cities'][city]['name']==cityname and world['cities'][city]['country']==countrycode:
2019-01-30 02:39:56 +00:00
'''
2019-01-31 03:14:54 +00:00
print (world['cities'][city]['country'])
print (world['cities'][city]['name'])
print (world['cities'][city]['lat'])
print (world['cities'][city]['lng'])
2019-01-30 02:39:56 +00:00
'''
2019-01-31 03:14:54 +00:00
return float(world['cities'][city]['lat']), float(world['cities'][city]['lng'])
2019-01-30 02:39:56 +00:00
# Add Kompass letter to given laser point list if it is in laser sky at Y axis 300
2019-01-31 03:14:54 +00:00
def DrawOrientation(laser):
2019-01-30 02:39:56 +00:00
# North direction is in given laser sky azimuth range?
if LaserSkies[laser][0] < 0 < LaserSkies[laser][1]:
2019-01-31 03:14:54 +00:00
lj3.Text("N",white,laser,azimuth2scrX(LaserSkies[laser][0],LaserSkies[laser][1],0), 300)
2019-01-30 02:39:56 +00:00
# East direction is in given laser sky azimuth range ?
if LaserSkies[laser][0] < 90 < LaserSkies[laser][1]:
2019-01-31 03:14:54 +00:00
lj3.Text("E",white,laser,azimuth2scrX(LaserSkies[laser][0],LaserSkies[laser][1],90), 300)
2019-01-30 02:39:56 +00:00
# South direction is in given laser sky azimuth range ?
if LaserSkies[laser][0] < 180 < LaserSkies[laser][1]:
2019-01-31 03:14:54 +00:00
lj3.Text("S",white,laser,azimuth2scrX(LaserSkies[laser][0],LaserSkies[laser][1],180), 300)
2019-01-30 02:39:56 +00:00
# West direction is in given laser sky azimuth range ?
if LaserSkies[laser][0] < 270 < LaserSkies[laser][1]:
2019-01-31 03:14:54 +00:00
lj3.Text("W",white,laser,azimuth2scrX(LaserSkies[laser][0],LaserSkies[laser][1],270), 300)
2019-01-30 02:39:56 +00:00
2019-01-31 03:14:54 +00:00
# Compute LaserSkies Coordinates for observer
def InitObserver(SkyCity, SkyCountryCode, time,ts):
global LaserSkies, Skylat, Skylong, SkyfieldTime, AstrObserver, SkyObserver
2019-01-30 02:39:56 +00:00
# Observer position i.e : Paris FR
#Skylat = 48.85341 # decimal degree
#Skylong = 2.3488 # decimal degree
print()
print("Observer GPS position and time...")
Skylat, Skylong = CityPositiion(SkyCity,SkyCountryCode)
print ("GPS Position of",SkyCity, "in", SkyCountryCode, ":",Skylat,Skylong)
# City GPS altitude not in Cities database... Let's say it's :
2019-01-31 03:14:54 +00:00
Skyelevation = 0 # meters
2019-01-30 02:39:56 +00:00
# Observer Time : Now
# Other time in Astropy style
# times = '1999-01-01T00:00:00.123456789'
# t = Time(times, format='isot', scale='utc')
print()
AstroSkyTime = time
2019-01-31 03:14:54 +00:00
print ("AstroPy time", AstroSkyTime)
2019-01-30 02:39:56 +00:00
SkyfieldTime = ts.from_astropy(AstroSkyTime)
2019-01-31 03:14:54 +00:00
print("SkyfieldTime from AstropyUTC",SkyfieldTime.utc_iso())
AstrObserver = EarthLocation(lat = Skylat * u.deg, lon = Skylong * u.deg, height = Skyelevation * u.m,)
SkyObserver = earth + Topos(Skylat, Skylong)
2019-01-30 02:39:56 +00:00
# Computer for all Laser "skies" their Right Ascension/Declinaison coordinates from their Altitude/azimuth Coordinates.
# to later select their visible objects in radec catalogs like hipparcos.
# LaserSky definition for one laser (in decimal degrees) : [LeftAzi, RightAzi, TopAlt, BotAlt, LeftRa, RightRa, TopDec, BottomDec]
# With 4 lasers with each one a quarter of the 360 ° real sky, there is 4 LaserSky :
LaserSkies = [[0.0,90.0,90.0,0.0,0.0,0.0,0.0,0.0],[90,180,90,0,0,0,0,0],[180,270,90,0,0,0,0,0],[270,360,90,0,0,0,0,0]]
2019-01-31 03:14:54 +00:00
RadecSkies(LaserSkies, AstroSkyTime)
def NewTime(timeshift):
2019-01-30 02:39:56 +00:00
2019-01-31 03:14:54 +00:00
SkyfieldTime += timeshift
UpdateSolar()
UpdateStars()
2019-01-30 02:39:56 +00:00
2019-01-28 13:18:19 +00:00
#
# Main functions
#
2019-01-30 02:39:56 +00:00
def Planetarium():
2019-01-31 03:14:54 +00:00
2019-01-30 02:39:56 +00:00
ts = load.timescale()
LoadHipparcos(ts)
LoadSolar()
LoadCities()
SkyCity = 'Paris'
SkyCountryCode = 'FR'
2019-01-31 03:14:54 +00:00
InitObserver(SkyCity, SkyCountryCode, Time.now(),ts)
2019-01-30 02:39:56 +00:00
print()
print ("Updating Sky Objects for current observer...")
2019-01-31 03:14:54 +00:00
print()
print("Updating solar system (de421) objects position for observer at", Skylat, Skylong, "time", SkyfieldTime.utc_iso())
2019-01-30 02:39:56 +00:00
UpdateSolar()
2019-01-31 03:14:54 +00:00
print ("Done.")
print()
print("Updating stars for observer at", Skylat, Skylong, "time", SkyfieldTime.utc_iso())
#UpdateStars()
print ("Done.")
2019-01-30 02:39:56 +00:00
# UpdateStars() Todo
DisplayStars = False
DisplaySolar = True
DisplayOrientation = True
2019-01-28 13:18:19 +00:00
while 1:
2019-01-30 02:39:56 +00:00
for laser in range(lasernumber):
if DisplayOrientation:
2019-01-31 03:14:54 +00:00
DrawOrientation(laser)
2019-01-30 02:39:56 +00:00
if DisplaySolar:
2019-01-31 03:14:54 +00:00
DrawSolar(laser)
2019-01-30 02:39:56 +00:00
if DisplayStars:
pass
lj3.DrawPL(laser)
time.sleep(0.01)
Planetarium()