forked from protonphoton/LJ
183 lines
4.4 KiB
Python
183 lines
4.4 KiB
Python
|
#!/usr/bin/python3
|
||
|
# -*- coding: utf-8 -*-
|
||
|
# -*- mode: Python -*-
|
||
|
|
||
|
|
||
|
'''
|
||
|
|
||
|
example, based on custom
|
||
|
v0.1.0
|
||
|
|
||
|
A copy of square.py you can modify to code your plugin.
|
||
|
custom1 has necessary hooks in LJ.conf, webui and so on.
|
||
|
|
||
|
|
||
|
LICENCE : CC
|
||
|
|
||
|
by Sam Neurohack
|
||
|
|
||
|
|
||
|
'''
|
||
|
import sys
|
||
|
import os
|
||
|
ljpath = r'%s' % os.getcwd().replace('\\','/')
|
||
|
|
||
|
# import from shell
|
||
|
sys.path.append(ljpath +'/../../libs/')
|
||
|
|
||
|
#import from LJ
|
||
|
sys.path.append(ljpath +'/libs/')
|
||
|
print(ljpath+'/../libs/')
|
||
|
|
||
|
import lj23layers as lj
|
||
|
|
||
|
sys.path.append('../libs')
|
||
|
import math
|
||
|
import time
|
||
|
import argparse
|
||
|
|
||
|
|
||
|
print ("")
|
||
|
print ("Arguments parsing if needed...")
|
||
|
argsparser = argparse.ArgumentParser(description="Custom1 example for LJ")
|
||
|
argsparser.add_argument("-v","--verbose",help="Verbosity level (0 by default)",default=0,type=int)
|
||
|
args = argsparser.parse_args()
|
||
|
|
||
|
# Useful variables init.
|
||
|
white = lj.rgb2int(255,255,255)
|
||
|
red = lj.rgb2int(255,0,0)
|
||
|
blue = lj.rgb2int(0,0,255)
|
||
|
green = lj.rgb2int(0,255,0)
|
||
|
|
||
|
width = 800
|
||
|
height = 600
|
||
|
centerX = width / 2
|
||
|
centerY = height / 2
|
||
|
|
||
|
# 3D to 2D projection parameters
|
||
|
fov = 256
|
||
|
viewer_distance = 2.2
|
||
|
|
||
|
# Anaglyph computation parameters for right and left eyes.
|
||
|
# algorythm come from anaglyph geo maps
|
||
|
eye_spacing = 100
|
||
|
nadir = 0.5
|
||
|
observer_altitude = 30000
|
||
|
map_layerane_altitude = 0.0
|
||
|
|
||
|
# square coordinates : vertices that compose each of the square.
|
||
|
vertices = [
|
||
|
(- 1.0, 1.0,- 1.0),
|
||
|
( 1.0, 1.0,- 1.0),
|
||
|
( 1.0,- 1.0,- 1.0),
|
||
|
(- 1.0,- 1.0,- 1.0)
|
||
|
]
|
||
|
|
||
|
face = [0,1,2,3]
|
||
|
|
||
|
#
|
||
|
# LJ inits
|
||
|
#
|
||
|
|
||
|
layer = 0
|
||
|
|
||
|
# Define properties for each drawn "element" : name, intensity, active, xy, color, red, green, blue, layer , closed
|
||
|
Leftsquare = lj.FixedObject('Leftsquare', True, 255, [], red, 255, 0, 0, layer , True)
|
||
|
Rightsquare = lj.FixedObject('Rightsquare', True, 255, [], green, 0, 255, 0, layer , True)
|
||
|
|
||
|
# 'Destination' for given layer : name, number, active, layer , scene, laser
|
||
|
Dest0 = lj.DestObject('0', 0, True, 0 , 0, 0) # Dest0 will send layer 0 points to scene 0, laser 0
|
||
|
|
||
|
|
||
|
#
|
||
|
# Anaglyph computation : different X coordinate for each eye
|
||
|
#
|
||
|
|
||
|
def LeftShift(elevation):
|
||
|
|
||
|
diff = elevation - map_layerane_altitude
|
||
|
return nadir * eye_spacing * diff / (observer_altitude - elevation)
|
||
|
|
||
|
def RightShift(elevation):
|
||
|
|
||
|
diff = map_layerane_altitude - elevation
|
||
|
return (1 - nadir) * eye_spacing * diff / (observer_altitude - elevation)
|
||
|
|
||
|
|
||
|
def Proj(x,y,z,angleX,angleY,angleZ):
|
||
|
|
||
|
rad = angleX * math.pi / 180
|
||
|
cosa = math.cos(rad)
|
||
|
sina = math.sin(rad)
|
||
|
y2 = y
|
||
|
y = y2 * cosa - z * sina
|
||
|
z = y2 * sina + z * cosa
|
||
|
|
||
|
rad = angleY * math.pi / 180
|
||
|
cosa = math.cos(rad)
|
||
|
sina = math.sin(rad)
|
||
|
z2 = z
|
||
|
z = z2 * cosa - x * sina
|
||
|
x = z2 * sina + x * cosa
|
||
|
|
||
|
rad = angleZ * math.pi / 180
|
||
|
cosa = math.cos(rad)
|
||
|
sina = math.sin(rad)
|
||
|
x2 = x
|
||
|
x = x2 * cosa - y * sina
|
||
|
y = x2 * sina + y * cosa
|
||
|
|
||
|
|
||
|
""" Transforms this 3D point to 2D using a perspective projection. """
|
||
|
factor = fov / (viewer_distance + z)
|
||
|
x = x * factor + centerX
|
||
|
y = - y * factor + centerY
|
||
|
return (x,y)
|
||
|
|
||
|
|
||
|
#
|
||
|
# Main
|
||
|
#
|
||
|
|
||
|
def Run():
|
||
|
Left = []
|
||
|
Right = []
|
||
|
counter =0
|
||
|
try:
|
||
|
while True:
|
||
|
Left = []
|
||
|
Right = []
|
||
|
x = vertices[0][0]
|
||
|
y = vertices[0][1]
|
||
|
z = vertices[0][2]
|
||
|
|
||
|
# lj tracers will "move" the laser to this first point in black, then move to the next with second point color.
|
||
|
# for more accuracy in dac emulator, repeat this first point.
|
||
|
|
||
|
# generate all points in square.
|
||
|
for point in face:
|
||
|
x = vertices[point][0]
|
||
|
y = vertices[point][1]
|
||
|
z = vertices[point][2]
|
||
|
left.append(proj(x+leftshift(z*25),y,z,0,counter,0))
|
||
|
right.append(proj(x+rightshift(z*25),y,z,0,counter,0))
|
||
|
|
||
|
|
||
|
lj.polylineonecolor(left, c = leftsquare.color , layer = leftsquare.layer, closed = leftsquare.closed)
|
||
|
lj.polylineonecolor(right, c = rightsquare.color , layer = rightsquare.layer, closed = rightsquare.closed)
|
||
|
lj.drawdests()
|
||
|
time.sleep(0.1)
|
||
|
counter += 1
|
||
|
if counter > 360:
|
||
|
counter = 0
|
||
|
|
||
|
except KeyboardInterrupt:
|
||
|
pass
|
||
|
|
||
|
# Gently stop on CTRL C
|
||
|
finally:
|
||
|
lj.ClosePlugin()
|
||
|
|
||
|
|
||
|
Run()
|