1
0
mirror of https://github.com/revspace/operame synced 2024-12-04 21:57:30 +00:00

Code cleanup

- Removed unused #define and 'using namespace'
- Moved magic literals to global const
- Reordered functions
- Changed timers in main loop to simple macro instead of Timer class
- Changed several identifiers
- Reformatted global variable assignments
This commit is contained in:
Juerd Waalboer 2020-12-27 20:57:53 +01:00
parent a9242b549b
commit f4fe6e3a1e

View File

@ -1,4 +1,3 @@
#define Sprintf(f, ...) ({ char* s; asprintf(&s, f, __VA_ARGS__); String r = s; free(s); r; })
#include <WiFi.h>
#include <MQTT.h>
#include <SPIFFS.h>
@ -10,48 +9,36 @@
#include <logo.h>
#include <list>
using namespace std;
unsigned long mqtt_interval;
const int portalbutton = 35;
const int demobutton = 0;
bool ota_enabled;
int co2_warning;
int co2_critical;
int co2_blink;
enum Driver { AQC, MHZ };
Driver driver;
Driver driver;
MQTTClient mqtt;
HardwareSerial hwserial1(1);
TFT_eSPI display;
TFT_eSprite sprite(&display);
MHZ19 mhz;
int mhz_co2_init = 410; // magic value reported while initializing
const int pin_portalbutton = 35;
const int pin_demobutton = 0;
const int pin_backlight = 4;
const int pin_sensor_rx = 27;
const int pin_sensor_tx = 26;
const int pin_pcb_ok = 12; // pulled to GND by PCB trace
int mhz_co2_init = 410; // magic value reported during init
MQTTClient mqtt;
HardwareSerial hwserial1(1);
TFT_eSPI display;
TFT_eSprite sprite(&display);
MHZ19 mhz;
String mqtt_topic;
String mqtt_template;
bool add_units;
bool wifi_enabled;
bool mqtt_enabled;
int max_failures;
// Configuration via WiFiSettings
unsigned long mqtt_interval;
bool ota_enabled;
int co2_warning;
int co2_critical;
int co2_blink;
String mqtt_topic;
String mqtt_template;
bool add_units;
bool wifi_enabled;
bool mqtt_enabled;
int max_failures;
struct Timer {
unsigned long previous;
unsigned long interval;
std::function<void()> function;
void operator()() {
if (millis() - previous >= interval) {
function();
previous = millis();
}
}
Timer(unsigned long ms, std::function<void()> f)
: interval(ms), function(f) {}
};
void retain(String topic, String message) {
void retain(const String& topic, const String& message) {
Serial.printf("%s %s\n", topic.c_str(), message.c_str());
mqtt.publish(topic, message, true, 0);
}
@ -103,47 +90,6 @@ void display_logo() {
sprite.pushSprite(0, 0);
}
void panic(const String& message) {
display_big(message, TFT_RED);
delay(5000);
ESP.restart();
}
void setup_ota() {
ArduinoOTA.setHostname(WiFiSettings.hostname.c_str());
ArduinoOTA.setPassword(WiFiSettings.password.c_str());
ArduinoOTA.onStart( []() { display_big("OTA", TFT_BLUE); });
ArduinoOTA.onEnd( []() { display_big("OTA done", TFT_GREEN); });
ArduinoOTA.onError( [](ota_error_t e) { display_big("OTA failed", TFT_RED); });
ArduinoOTA.onProgress([](unsigned int p, unsigned int t) {
String pct { (int) ((float) p / t * 100) };
display_big(pct + "%");
});
ArduinoOTA.begin();
}
bool button(int pin) {
if (digitalRead(pin)) return false;
unsigned long start = millis();
while (!digitalRead(pin)) {
if (millis() - start >= 50) display_big("");
}
return millis() - start >= 50;
}
void check_portalbutton() {
if (button(portalbutton)) WiFiSettings.portal();
}
void check_demobutton() {
if (button(demobutton)) ppm_demo();
}
void check_buttons() {
check_portalbutton();
check_demobutton();
}
void display_ppm(int ppm) {
int fg, bg;
if (ppm >= co2_critical) {
@ -170,7 +116,7 @@ void ppm_demo() {
delay(1000);
for (int p = 400; p < 1200; p++) {
display_ppm(p);
if (button(demobutton)) {
if (button(pin_demobutton)) {
display_logo();
delay(500);
return;
@ -181,27 +127,162 @@ void ppm_demo() {
delay(5000);
}
void panic(const String& message) {
display_big(message, TFT_RED);
delay(5000);
ESP.restart();
}
bool button(int pin) {
if (digitalRead(pin)) return false;
unsigned long start = millis();
while (!digitalRead(pin)) {
if (millis() - start >= 50) display_big("");
}
return millis() - start >= 50;
}
void check_portalbutton() {
if (button(pin_portalbutton)) WiFiSettings.portal();
}
void check_demobutton() {
if (button(pin_demobutton)) ppm_demo();
}
void check_buttons() {
check_portalbutton();
check_demobutton();
}
void setup_ota() {
ArduinoOTA.setHostname(WiFiSettings.hostname.c_str());
ArduinoOTA.setPassword(WiFiSettings.password.c_str());
ArduinoOTA.onStart( []() { display_big("OTA", TFT_BLUE); });
ArduinoOTA.onEnd( []() { display_big("OTA done", TFT_GREEN); });
ArduinoOTA.onError( [](ota_error_t e) { display_big("OTA failed", TFT_RED); });
ArduinoOTA.onProgress([](unsigned int p, unsigned int t) {
String pct { (int) ((float) p / t * 100) };
display_big(pct + "%");
});
ArduinoOTA.begin();
}
void connect_mqtt() {
if (mqtt.connected()) return; // already/still connected
static int failures = 0;
if (mqtt.connect(WiFiSettings.hostname.c_str())) {
failures = 0;
} else {
failures++;
if (failures >= max_failures) panic("MQTT onbereikbaar");
}
}
int aqc_get_co2() {
static bool initialized = false;
const uint8_t command[9] = { 0xff, 0x01, 0xc5, 0, 0, 0, 0, 0, 0x3a };
uint8_t response[9];
int co2 = -1;
for (int attempt = 0; attempt < 3; attempt++) {
hwserial1.flush();
int limit = 20; // .available() sometimes stays true
while(hwserial1.available() && --limit) hwserial1.read();
hwserial1.write(command, sizeof(command));
delay(50);
size_t c = hwserial1.readBytes(response, sizeof(response));
if (c != sizeof(response) || response[0] != 0xff || response[1] != 0x86) {
continue;
}
uint8_t checksum = 255;
for (int i = 0; i < sizeof(response) - 1; i++) {
checksum -= response[i];
}
if (response[8] == checksum) {
co2 = response[2] * 256 + response[3];
break;
}
delay(50);
}
if (co2 < 0) {
initialized = false;
return co2;
}
if (!initialized && (co2 == 9999 || co2 == 400)) return 0;
initialized = true;
return co2;
}
void mhz_setup() {
mhz.begin(hwserial1);
// mhz.setFilter(true, true); Library filter doesn't handle 0436
mhz.autoCalibration(true);
char v[5] = {};
mhz.getVersion(v);
v[4] = '\0';
if (strcmp("0436", v) == 0) mhz_co2_init = 436;
}
int mhz_get_co2() {
int co2 = mhz.getCO2();
int unclamped = mhz.getCO2(false);
if (mhz.errorCode != RESULT_OK) {
delay(500);
mhz_setup();
return -1;
}
// reimplement filter from library, but also checking for 436 because our
// sensors (firmware 0436, coincidence?) return that instead of 410...
if (unclamped == mhz_co2_init && co2 - unclamped >= 10) return 0;
// No known sensors support >10k PPM (library filter tests for >32767)
if (co2 > 10000 || unclamped > 10000) return 0;
return co2;
}
int get_co2() {
// <0 means read error, 0 means still initializing, >0 is PPM value
if (driver == AQC) return aqc_get_co2();
if (driver == MHZ) return mhz_get_co2();
// Should be unreachable
panic("driverfout");
return -1; // suppress warning
}
void setup() {
Serial.begin(115200);
Serial.println("Operame start");
SPIFFS.begin(true);
pinMode(portalbutton, INPUT_PULLUP);
pinMode(demobutton, INPUT_PULLUP);
pinMode(4, OUTPUT);
digitalWrite(4, HIGH);
pinMode(pin_portalbutton, INPUT_PULLUP);
pinMode(pin_demobutton, INPUT_PULLUP);
pinMode(pin_pcb_ok, INPUT_PULLUP);
pinMode(pin_backlight, OUTPUT);
digitalWrite(pin_backlight, HIGH);
display.init();
display.fillScreen(TFT_BLACK);
display.setRotation(1);
sprite.createSprite(display.width(), display.height());
pinMode(12, INPUT_PULLUP);
while (digitalRead(12)) {
while (digitalRead(pin_pcb_ok)) {
display_big("module verkeerd om!", TFT_RED);
delay(1000);
}
hwserial1.begin(9600, SERIAL_8N1, 27, 26);
hwserial1.begin(9600, SERIAL_8N1, pin_sensor_rx, pin_sensor_tx);
if (aqc_get_co2() >= 0) {
driver = AQC;
@ -298,7 +379,7 @@ void setup() {
}
if (ota_enabled) ArduinoOTA.handle();
if (button(portalbutton)) ESP.restart();
if (button(pin_portalbutton)) ESP.restart();
};
if (wifi_enabled) WiFiSettings.connect(false, 15);
@ -309,139 +390,36 @@ void setup() {
if (ota_enabled) setup_ota();
}
void connect_mqtt() {
if (mqtt.connected()) return; // already/still connected
static int failures = 0;
if (mqtt.connect(WiFiSettings.hostname.c_str())) {
failures = 0;
} else {
failures++;
if (failures >= max_failures) panic("MQTT onbereikbaar");
}
}
int aqc_get_co2() {
static bool initialized = false;
const uint8_t command[9] = { 0xff, 0x01, 0xc5, 0, 0, 0, 0, 0, 0x3a };
uint8_t response[9];
int co2 = -1;
for (int attempt = 0; attempt < 3; attempt++) {
hwserial1.flush();
int limit = 20; // .available() sometimes stays true
while(hwserial1.available() && --limit) hwserial1.read();
hwserial1.write(command, sizeof(command));
delay(50);
size_t c = hwserial1.readBytes(response, sizeof(response));
if (c != sizeof(response) || response[0] != 0xff || response[1] != 0x86) {
continue;
}
uint8_t checksum = 255;
for (int i = 0; i < sizeof(response) - 1; i++) {
checksum -= response[i];
}
if (response[8] == checksum) {
co2 = response[2] * 256 + response[3];
break;
}
delay(50);
}
if (co2 < 0) {
initialized = false;
return co2;
}
if (!initialized && (co2 == 9999 || co2 == 400)) return 0;
initialized = true;
return co2;
}
void mhz_setup() {
mhz.begin(hwserial1);
// mhz.setFilter(true, true); Library filter doesn't handle 0436
mhz.autoCalibration(true);
char v[5] = {};
mhz.getVersion(v);
v[4] = '\0';
if (strcmp("0436", v) == 0) mhz_co2_init = 436;
}
int mhz_get_co2() {
int co2 = mhz.getCO2();
int unclamped = mhz.getCO2(false);
if (mhz.errorCode != RESULT_OK) {
delay(500);
mhz_setup();
return -1;
}
// reimplement filter from library, but also checking for 436 because our
// sensors (firmware 0436, coincidence?) return that instead of 410...
if (unclamped == mhz_co2_init && co2 - unclamped >= 10) return 0;
// No known sensors support >10k PPM (library filter tests for >32767)
if (co2 > 10000 || unclamped > 10000) return 0;
return co2;
}
int get_co2() {
// <0 means read error, 0 means still initializing, >0 is PPM value
if (driver == AQC) return aqc_get_co2();
if (driver == MHZ) return mhz_get_co2();
// Should be unreachable
panic("driverfout");
return -1; // suppress warning
}
#define every(t) for (static uint16_t _lasttime; (uint16_t)((uint16_t)millis() - _lasttime) >= (t); _lasttime += (t))
void loop() {
static int co2;
static Timer read_sensor {
5000,
[] {
co2 = get_co2();
Serial.println(co2);
}
};
read_sensor();
every(5000) {
co2 = get_co2();
Serial.println(co2);
}
static Timer display {
50,
[] {
if (co2 < 0) {
display_big("sensorfout", TFT_RED);
} else if (co2 == 0) {
display_big("wacht...");
} else {
// some MH-Z19's go to 10000 but the display has space for 4 digits
display_ppm(co2 > 9999 ? 9999 : co2);
}
every(50) {
if (co2 < 0) {
display_big("sensorfout", TFT_RED);
} else if (co2 == 0) {
display_big("wacht...");
} else {
// some MH-Z19's go to 10000 but the display has space for 4 digits
display_ppm(co2 > 9999 ? 9999 : co2);
}
};
display();
}
static Timer publish {
mqtt_interval,
[] {
if (co2 <= 0) return;
if (mqtt_enabled) {
mqtt.loop();
every(mqtt_interval) {
if (co2 <= 0) break;
connect_mqtt();
String message = mqtt_template;
message.replace("{}", String(co2));
retain(mqtt_topic, message);
}
};
if (mqtt_enabled) {
mqtt.loop();
publish();
}
if (ota_enabled) ArduinoOTA.handle();