1
0
mirror of https://github.com/revspace/operame synced 2024-12-04 21:57:30 +00:00

Support both AQC and MH-Z19B

This commit is contained in:
Juerd Waalboer 2020-12-20 03:53:43 +01:00
parent 6f4ac2b01b
commit 420868585d

View File

@ -3,7 +3,7 @@
#include <MQTT.h>
#include <SPIFFS.h>
#include <WiFiSettings.h>
//#include <MHZ19.h>
#include <MHZ19.h>
#include <ArduinoOTA.h>
#include <SPI.h>
#include <TFT_eSPI.h>
@ -20,13 +20,16 @@ int co2_warning;
int co2_critical;
int co2_blink;
int co2_init = 410; // magic value reported while initializing
enum Driver { AQC, MHZ };
Driver driver;
int mhz_co2_init = 410; // magic value reported while initializing
MQTTClient mqtt;
HardwareSerial hwserial1(1);
TFT_eSPI display;
TFT_eSprite sprite(&display);
//MHZ19 mhz;
MHZ19 mhz;
String mqtt_topic;
String mqtt_template;
bool add_units;
@ -154,68 +157,19 @@ void setup() {
hwserial1.begin(9600, SERIAL_8N1, 27, 26);
/*
// senseair?
// hwserial1.print("\xfe\x41\0\x80\x01\x10\x28\x7e");
// delay(1000);
// hwserial1.print("\xfe\x44\0\0\x08\x20\x79\x3c");
// nope
// HCC-ding?
hwserial1.print("\x5c\x01\xc5\0\0\0\0\0\xDD");
// nope
// zelfde protocol maar dan anders?
uint8_t p[9];
p[1] = 0x01;
p[2] = 0xc5;
while (1) {
for (int i = 255; i < 256; i++) {
p[0] = i;
int sum = 0;
for (int c = 0; c < 8; c++) {
Serial.print(p[c], HEX);
Serial.print(" ");
sum += p[c];
if (aqc_get_co2() >= 0) {
driver = AQC;
hwserial1.setTimeout(100);
Serial.println("Using AQC driver.");
} else {
driver = MHZ;
mhz_setup();
Serial.println("Using MHZ driver.");
}
p[8] = 255 - (sum % 256);
Serial.println(p[8], HEX);
hwserial1.write(p, 9);
delay(50);
if (hwserial1.available()) {
Serial.println("JAAAAAAAAAAAAAAAAAAAA");
while (hwserial1.available()) {
int c = hwserial1.read();
if (c != -1) Serial.println(c, HEX);
}
}
delay(1000);
}
}
while (1) {
int c = hwserial1.read();
if (c != -1) Serial.println(c, HEX);
}
*/
//mhz.begin(hwserial1);
display_logo();
delay(2000);
//check_sensor();
//// mhz.setFilter(true, true); Library filter doesn't handle 0436
//mhz.autoCalibration(true);
//char v[5];
//mhz.getVersion(v);
//v[4] = '\0';
//if (strcmp("0436", v) == 0) co2_init = 436;
//Serial.printf("MH-Z19 firmware version %s\n", v);
WiFiSettings.hostname = "operame-";
wifi_enabled = WiFiSettings.checkbox("operame_wifi", false, "WiFi-verbinding gebruiken");
ota_enabled = WiFiSettings.checkbox("operame_ota", false, "Draadloos herprogrammeren inschakelen. (Gebruikt portaalwachtwoord!)") && wifi_enabled;
@ -276,35 +230,83 @@ void connect_mqtt() {
}
}
void check_sensor() {
/*
if (mhz.errorCode == RESULT_OK) return;
while (1) {
delay(1000);
mhz.verify();
if (mhz.errorCode == RESULT_OK) return;
display_big("sensorfout", TFT_RED);
}
*/
}
int aqc_get_co2() {
static bool initialized = false;
int get_co2() {
const uint8_t command[9] = { 0xff, 0x01, 0xc5, 0, 0, 0, 0, 0, 0x3a };
char response[9];
int CO2 = -1;
for (int attempt = 0; attempt < 3; attempt++) {
hwserial1.flush();
int limit = 20; // .available() sometimes stays true
while(hwserial1.available() && --limit) hwserial1.read();
hwserial1.write(command, sizeof(command));
delay(50);
char response[9];
if (hwserial1.available()) {
while (hwserial1.available()) {
int c = hwserial1.readBytes(response, sizeof(response));
if (c != sizeof(response)) return 0;
}
if (c != sizeof(response)) {
continue;
}
uint8_t checksum = 255;
for (int i = 0; i < sizeof(response) - 1; i++) {
Serial.printf("%02x %d\n", response[i], response[i]);
checksum -= response[i];
}
if (response[8] != checksum) return 0;
return response[2] * 256 + response[3];
if (response[8] == checksum) {
CO2 = response[2] * 256 + response[3];
break;
}
delay(50);
}
if (CO2 < 0) {
initialized = false;
return CO2;
}
if (!initialized && (CO2 == 9999 || CO2 == 400)) return 0;
initialized = true;
return CO2;
}
void mhz_setup() {
mhz.begin(hwserial1);
// mhz.setFilter(true, true); Library filter doesn't handle 0436
mhz.autoCalibration(true);
char v[5];
mhz.getVersion(v);
v[4] = '\0';
if (strcmp("0436", v) == 0) mhz_co2_init = 436;
}
int mhz_get_co2() {
int CO2 = mhz.getCO2();
int unclamped = mhz.getCO2(false);
if (mhz.errorCode != RESULT_OK) {
delay(500);
mhz_setup();
return -1;
}
// reimplement filter from library, but also checking for 436 because our
// sensors (firmware 0436, coincidence?) return that instead of 410...
if (unclamped == mhz_co2_init && CO2 - unclamped >= 10) return 0;
// No known sensors support >10k PPM (library filter tests for >32767)
if (CO2 > 10000 || unclamped > 10000) return 0;
return CO2;
}
int get_co2() {
if (driver == AQC) return aqc_get_co2();
if (driver == MHZ) return mhz_get_co2();
// Should be unreachable
ESP.restart();
return -1; // suppress warning
}
void loop() {
@ -315,14 +317,14 @@ void loop() {
int CO2 = get_co2();
// No known sensors support >10k PPM (library filter tests for >32767)
// if (CO2 > 10000 || unclamped > 10000) CO2 = 0;
// check_sensor();
if (CO2 < 0) {
display_big("sensorfout", TFT_RED);
}
else if (CO2 == 0) {
display_big("wacht...");
}
else {
Serial.println(CO2);
if (CO2) {
// some MH-Z19's go to 10000 but the display has space for 4 digits
if (CO2 > 9999) CO2 = 9999;
@ -335,15 +337,12 @@ void loop() {
message.replace("{}", String(CO2));
retain(mqtt_topic, message);
}
} else {
display_big("wacht...");
}
while (millis() - start < 6000) {
if (CO2) display_ppm(CO2); // repeat, for blinking
if (CO2 > 0) display_ppm(CO2); // repeat, for blinking
if (ota_enabled) ArduinoOTA.handle();
check_buttons();
delay(20);
}
Serial.println(esp_get_free_heap_size());
}