1
0
mirror of https://github.com/revspace/operame synced 2025-01-09 22:36:58 +00:00
operame/operame.ino

345 lines
10 KiB
Arduino
Raw Normal View History

2020-11-16 22:48:15 +00:00
#define Sprintf(f, ...) ({ char* s; asprintf(&s, f, __VA_ARGS__); String r = s; free(s); r; })
#include <WiFi.h>
#include <MQTT.h>
#include <SPIFFS.h>
#include <WiFiSettings.h>
#include <MHZ19.h>
#include <ArduinoOTA.h>
#include <SPI.h>
#include <TFT_eSPI.h>
2020-11-25 00:55:40 +00:00
#include <logo.h>
#include <deque>
#include <algorithm>
2020-11-16 22:48:15 +00:00
using namespace std;
unsigned long mqtt_interval;
const int portalbutton = 35;
const int demobutton = 0;
bool ota_enabled;
int co2_warning;
int co2_critical;
int co2_blink;
int co2_baseline = 420;
const int co2_assumed = 420;
2020-11-16 22:48:15 +00:00
int co2_init = 410; // magic value reported while initializing
2020-11-16 22:48:15 +00:00
MQTTClient mqtt;
HardwareSerial hwserial1(1);
TFT_eSPI display;
TFT_eSprite sprite(&display);
MHZ19 mhz;
String mqtt_topic;
String mqtt_template;
bool add_units;
bool wifi_enabled;
bool mqtt_enabled;
int max_failures;
deque<int> history;
int max_history = 8 * 24 * (60 / 5);
String slurp(const String& fn) {
File f = SPIFFS.open(fn, "r");
String r = f.readString();
f.close();
return r;
}
bool spurt(const String& fn, const String& content) {
File f = SPIFFS.open(fn, "w");
if (!f) return false;
auto w = f.print(content);
f.close();
return w == content.length();
}
2020-11-16 22:48:15 +00:00
void retain(String topic, String message) {
Serial.printf("%s %s\n", topic.c_str(), message.c_str());
mqtt.publish(topic, message, true, 0);
}
void display_big(const String& text, int fg = TFT_WHITE, int bg = TFT_BLACK) {
sprite.setTextSize(1);
bool nondigits = false;
for (int i = 0; i < text.length(); i++) {
char c = text.charAt(i);
if (c < '0' || c > '9') nondigits = true;
}
sprite.setTextFont(nondigits ? 4 : 8);
sprite.setTextSize(nondigits && text.length() < 10 ? 2 : 1);
sprite.setTextDatum(MC_DATUM);
sprite.setTextColor(fg, bg);
sprite.fillSprite(bg);
if (WiFi.status() == WL_CONNECTED)
sprite.drawRect(0, 0, display.width(), display.height(), TFT_BLUE);
sprite.drawString(text, display.width()/2, display.height()/2);
sprite.pushSprite(0, 0);
}
2020-11-25 00:55:40 +00:00
void display_logo() {
sprite.setSwapBytes(true);
sprite.fillSprite(TFT_BLACK);
sprite.pushImage(12, 30, 215, 76, OPERAME_LOGO);
if (WiFi.status() == WL_CONNECTED)
sprite.drawRect(0, 0, display.width(), display.height(), TFT_BLUE);
sprite.pushSprite(0, 0);
}
2020-11-16 22:48:15 +00:00
void setup_ota() {
ArduinoOTA.setHostname(WiFiSettings.hostname.c_str());
ArduinoOTA.setPassword(WiFiSettings.password.c_str());
ArduinoOTA.onStart( []() { display_big("OTA", TFT_BLUE); });
ArduinoOTA.onEnd( []() { display_big("OTA done", TFT_GREEN); });
ArduinoOTA.onError( [](ota_error_t e) { display_big("OTA failed", TFT_RED); });
ArduinoOTA.onProgress([](unsigned int p, unsigned int t) {
String pct { (int) ((float) p / t * 100) };
display_big(pct + "%");
});
ArduinoOTA.begin();
}
void check_portalbutton() {
if (digitalRead(portalbutton)) return;
delay(50);
if (digitalRead(portalbutton)) return;
WiFiSettings.portal();
}
void check_demobutton() {
if (digitalRead(demobutton)) return;
delay(50);
if (digitalRead(demobutton)) return;
ppm_demo();
}
void check_buttons() {
check_portalbutton();
check_demobutton();
}
void display_ppm(int ppm) {
int fg, bg;
if (ppm >= co2_critical) {
fg = TFT_WHITE;
bg = TFT_RED;
} else if (ppm >= co2_warning) {
fg = TFT_BLACK;
bg = TFT_YELLOW;
} else {
fg = TFT_GREEN;
bg = TFT_BLACK;
}
if (ppm >= co2_blink && millis() % 2000 < 1000) {
std::swap(fg, bg);
}
display_big(String(ppm), fg, bg);
}
void ppm_demo() {
display_big("demo!");
delay(3000);
2020-11-25 00:55:40 +00:00
display_logo();
delay(1000);
2020-11-16 22:48:15 +00:00
for (int p = 400; p < 1200; p++) {
display_ppm(p);
delay(30);
}
2020-11-25 00:55:40 +00:00
display_logo();
delay(5000);
2020-11-16 22:48:15 +00:00
}
void setup() {
Serial.begin(115200);
Serial.println("Operame start");
SPIFFS.begin(true);
pinMode(portalbutton, INPUT_PULLUP);
pinMode(demobutton, INPUT_PULLUP);
pinMode(4, OUTPUT);
digitalWrite(4, HIGH);
display.init();
display.fillScreen(TFT_BLACK);
display.setRotation(1);
sprite.createSprite(display.width(), display.height());
2020-11-17 20:40:34 +00:00
pinMode(12, INPUT_PULLUP);
while (digitalRead(12)) {
display_big("module verkeerd om!", TFT_RED);
delay(1000);
}
hwserial1.begin(9600, SERIAL_8N1, 27, 26);
2020-11-16 22:48:15 +00:00
mhz.begin(hwserial1);
2020-11-25 00:55:40 +00:00
display_logo();
delay(2000);
2020-11-16 22:48:15 +00:00
check_sensor();
mhz.autoCalibration(false); // ours works better
// mhz.setFilter(true, true); Library filter doesn't handle 0436
char v[5];
mhz.getVersion(v);
v[4] = '\0';
if (strcmp("0436", v) == 0) co2_init = 436;
Serial.printf("MH-Z19 firmware version %s\n", v);
2020-11-16 22:48:15 +00:00
WiFiSettings.hostname = "operame-";
wifi_enabled = WiFiSettings.checkbox("operame_wifi", false, "WiFi-verbinding gebruiken");
ota_enabled = WiFiSettings.checkbox("operame_ota", false, "Draadloos herprogrammeren inschakelen. (Gebruikt portaalwachtwoord!)") && wifi_enabled;
WiFiSettings.heading("CO2-niveaus");
co2_warning = WiFiSettings.integer("operame_co2_warning", 400, 5000, 700, "Geel vanaf [ppm]");
co2_critical = WiFiSettings.integer("operame_co2_critical",400, 5000, 800, "Rood vanaf [ppm]");
co2_blink = WiFiSettings.integer("operame_co2_blink", 800, 5000, 800, "Knipperen vanaf [ppm]");
WiFiSettings.heading("MQTT");
2020-11-16 22:51:38 +00:00
mqtt_enabled = WiFiSettings.checkbox("operame_mqtt", false, "Metingen via het MQTT-protocol versturen") && wifi_enabled;
2020-11-16 22:48:15 +00:00
String server = WiFiSettings.string("mqtt_server", 64, "", "Broker");
int port = WiFiSettings.integer("mqtt_port", 0, 65535, 1883, "Broker TCP-poort");
max_failures = WiFiSettings.integer("operame_max_failures", 0, 1000, 10, "Aantal verbindingsfouten voor automatische herstart");
mqtt_topic = WiFiSettings.string("operame_mqtt_topic", WiFiSettings.hostname, "Topic");
mqtt_interval = 1000UL * WiFiSettings.integer("operame_mqtt_interval", 10, 3600, 60, "Publicatie-interval [s]");
mqtt_template = WiFiSettings.string("operame_mqtt_template", "{} PPM", "Berichtsjabloon");
WiFiSettings.info("De {} in het sjabloon wordt vervangen door de gemeten waarde.");
if (ota_enabled) WiFiSettings.onPortal = setup_ota;
WiFiSettings.onConnect = []() {
check_buttons();
display_big("Verbinden met WiFi...", TFT_BLUE);
return 50;
};
WiFiSettings.onFailure = []() {
display_big("WiFi mislukt!", TFT_RED);
delay(2000);
};
WiFiSettings.onPortal = []() {
display_big("Configuratieportal", TFT_BLUE);
};
WiFiSettings.onPortalWaitLoop = []() {
if (ota_enabled) ArduinoOTA.handle();
};
if (wifi_enabled) WiFiSettings.connect(false, 15);
static WiFiClient wificlient;
if (mqtt_enabled) mqtt.begin(server.c_str(), port, wificlient);
if (ota_enabled) setup_ota();
display_big(":-)");
co2_baseline = slurp("/operame_baseline").toInt();
if (!co2_baseline) co2_baseline = co2_assumed;
Serial.printf("Initial CO2 baseline: %d PPM.\n", co2_baseline);
2020-11-16 22:48:15 +00:00
}
void connect_mqtt() {
if (mqtt.connected()) return; // already/still connected
static int failures = 0;
2020-11-28 21:10:12 +00:00
if (WiFi.status() == WL_CONNECTED && mqtt.connect(WiFiSettings.hostname.c_str())) {
2020-11-16 22:48:15 +00:00
failures = 0;
} else {
failures++;
if (failures >= max_failures) ESP.restart();
}
}
void check_sensor() {
if (mhz.errorCode == RESULT_OK) return;
while (1) {
delay(1000);
mhz.verify();
if (mhz.errorCode == RESULT_OK) return;
display_big("sensorfout", TFT_RED);
}
}
void abc() {
const int window = 3; // TODO make 10
if (history.size() < window) return;
int lowest = 99999;
auto begin = history.begin();
auto end = history.end() - window;
for (auto it = begin; it != end; ++it) {
auto wend = it + window;
auto minmax = std::minmax_element(it, wend);
if (abs(*minmax.first - *minmax.second) > 50) continue;
int sum = 0;
for (auto sit = it; sit != wend; ++sit) sum += *sit;
int avg = sum / window;
if (avg < lowest) lowest = avg;
}
if (lowest != 99999 && lowest != co2_baseline) {
co2_baseline = lowest;
Serial.printf("New CO2 baseline: %d PPM.\n", co2_baseline);;
spurt("/operame_baseline", String(co2_baseline));
}
}
2020-11-16 22:48:15 +00:00
void loop() {
2020-11-18 22:45:20 +00:00
static unsigned long previous_mqtt = 0;
unsigned long start = millis();
2020-11-16 22:48:15 +00:00
if (mqtt_enabled) mqtt.loop();
int CO2 = mhz.getCO2();
int unclamped = mhz.getCO2(false);
// reimplement filter from library, but also checking for 436 because our
// sensors (firmware 0436, coincidence?) return that instead of 410...
if (unclamped == co2_init && CO2 - unclamped >= 10) CO2 = 0;
// No known sensors support >10k PPM (library filter tests for >32767)
if (CO2 > 10000 || unclamped > 10000) CO2 = 0;
2020-11-16 22:48:15 +00:00
check_sensor();
Serial.println(CO2);
static unsigned long previous_history;
// TODO change 5 to minutes
if (millis() - previous_history >= 1 * 60 * 1000) {
history.push_back(CO2);
if (history.size() > max_history) history.pop_front();
previous_history = millis();
}
abc();
CO2 += co2_assumed - co2_baseline;
2020-11-16 22:48:15 +00:00
if (CO2) {
// some MH-Z19's go to 10000 but the display has space for 4 digits
if (CO2 > 9999) CO2 = 9999;
2020-11-16 22:48:15 +00:00
display_ppm(CO2);
2020-11-18 22:45:20 +00:00
if (mqtt_enabled && millis() - previous_mqtt >= mqtt_interval) {
previous_mqtt = millis();
2020-11-16 22:48:15 +00:00
connect_mqtt();
String message = mqtt_template;
message.replace("{}", String(CO2));
retain(mqtt_topic, message);
}
} else {
display_big("wacht...");
}
2020-11-18 22:45:20 +00:00
while (millis() - start < 6000) {
2020-11-16 22:48:15 +00:00
if (CO2) display_ppm(CO2); // repeat, for blinking
if (ota_enabled) ArduinoOTA.handle();
check_buttons();
delay(20);
}
2020-11-16 22:48:15 +00:00
Serial.println(esp_get_free_heap_size());
}