1
0
mirror of https://github.com/revspace/operame synced 2025-01-10 06:47:00 +00:00
operame/operame.ino

418 lines
12 KiB
Arduino
Raw Normal View History

2020-11-16 22:48:15 +00:00
#include <WiFi.h>
#include <MQTT.h>
#include <SPIFFS.h>
#include <WiFiSettings.h>
2020-12-20 02:53:43 +00:00
#include <MHZ19.h>
2020-11-16 22:48:15 +00:00
#include <ArduinoOTA.h>
#include <SPI.h>
#include <TFT_eSPI.h>
2020-11-25 00:55:40 +00:00
#include <logo.h>
2020-11-16 22:48:15 +00:00
#include <list>
#include <operame_strings.h>
2020-11-16 22:48:15 +00:00
2021-01-26 04:09:52 +00:00
#define LANGUAGE "nl"
OperameLanguage::Texts T;
2021-01-26 04:09:52 +00:00
2020-12-20 02:53:43 +00:00
enum Driver { AQC, MHZ };
Driver driver;
MQTTClient mqtt;
HardwareSerial hwserial1(1);
TFT_eSPI display;
TFT_eSprite sprite(&display);
MHZ19 mhz;
const int pin_portalbutton = 35;
const int pin_demobutton = 0;
const int pin_backlight = 4;
const int pin_sensor_rx = 27;
const int pin_sensor_tx = 26;
const int pin_pcb_ok = 12; // pulled to GND by PCB trace
int mhz_co2_init = 410; // magic value reported during init
// Configuration via WiFiSettings
unsigned long mqtt_interval;
bool ota_enabled;
int co2_warning;
int co2_critical;
int co2_blink;
String mqtt_topic;
String mqtt_template;
bool add_units;
bool wifi_enabled;
bool mqtt_enabled;
int max_failures;
void retain(const String& topic, const String& message) {
2020-11-16 22:48:15 +00:00
Serial.printf("%s %s\n", topic.c_str(), message.c_str());
mqtt.publish(topic, message, true, 0);
}
2020-12-27 18:51:19 +00:00
void clear_sprite(int bg = TFT_BLACK) {
sprite.fillSprite(bg);
if (WiFi.status() == WL_CONNECTED) {
sprite.drawRect(0, 0, display.width(), display.height(), TFT_BLUE);
}
}
2020-11-16 22:48:15 +00:00
void display_big(const String& text, int fg = TFT_WHITE, int bg = TFT_BLACK) {
2020-12-27 18:51:19 +00:00
clear_sprite(bg);
2020-11-16 22:48:15 +00:00
sprite.setTextSize(1);
bool nondigits = false;
for (int i = 0; i < text.length(); i++) {
char c = text.charAt(i);
if (c < '0' || c > '9') nondigits = true;
}
sprite.setTextFont(nondigits ? 4 : 8);
sprite.setTextSize(nondigits && text.length() < 10 ? 2 : 1);
sprite.setTextDatum(MC_DATUM);
sprite.setTextColor(fg, bg);
sprite.drawString(text, display.width()/2, display.height()/2);
sprite.pushSprite(0, 0);
}
2020-12-23 22:15:14 +00:00
void display_lines(const std::list<String>& lines, int fg = TFT_WHITE, int bg = TFT_BLACK) {
2020-12-27 18:51:19 +00:00
clear_sprite(bg);
2020-12-23 22:15:14 +00:00
sprite.setTextSize(1);
sprite.setTextFont(4);
sprite.setTextDatum(MC_DATUM);
sprite.setTextColor(fg, bg);
2020-12-27 18:51:19 +00:00
2020-12-23 22:15:14 +00:00
const int line_height = 32;
int y = display.height()/2 - (lines.size()-1) * line_height/2;
for (auto line : lines) {
sprite.drawString(line, display.width()/2, y);
y += line_height;
}
sprite.pushSprite(0, 0);
}
2020-11-25 00:55:40 +00:00
void display_logo() {
2020-12-27 18:51:19 +00:00
clear_sprite();
2020-11-25 00:55:40 +00:00
sprite.setSwapBytes(true);
sprite.pushImage(12, 30, 215, 76, OPERAME_LOGO);
sprite.pushSprite(0, 0);
}
2020-11-16 22:48:15 +00:00
void display_ppm(int ppm) {
int fg, bg;
if (ppm >= co2_critical) {
fg = TFT_WHITE;
bg = TFT_RED;
} else if (ppm >= co2_warning) {
fg = TFT_BLACK;
bg = TFT_YELLOW;
} else {
fg = TFT_GREEN;
bg = TFT_BLACK;
}
if (ppm >= co2_blink && millis() % 2000 < 1000) {
std::swap(fg, bg);
}
display_big(String(ppm), fg, bg);
}
void ppm_demo() {
display_big("demo!");
delay(3000);
2020-11-25 00:55:40 +00:00
display_logo();
delay(1000);
2020-11-16 22:48:15 +00:00
for (int p = 400; p < 1200; p++) {
display_ppm(p);
if (button(pin_demobutton)) {
2020-12-22 04:11:33 +00:00
display_logo();
delay(500);
return;
}
2020-11-16 22:48:15 +00:00
delay(30);
}
2020-11-25 00:55:40 +00:00
display_logo();
delay(5000);
2020-11-16 22:48:15 +00:00
}
void panic(const String& message) {
display_big(message, TFT_RED);
delay(5000);
ESP.restart();
}
bool button(int pin) {
if (digitalRead(pin)) return false;
unsigned long start = millis();
while (!digitalRead(pin)) {
if (millis() - start >= 50) display_big("");
}
return millis() - start >= 50;
}
void check_portalbutton() {
if (button(pin_portalbutton)) WiFiSettings.portal();
}
void check_demobutton() {
if (button(pin_demobutton)) ppm_demo();
}
void check_buttons() {
check_portalbutton();
check_demobutton();
}
void setup_ota() {
ArduinoOTA.setHostname(WiFiSettings.hostname.c_str());
ArduinoOTA.setPassword(WiFiSettings.password.c_str());
ArduinoOTA.onStart( []() { display_big("OTA", TFT_BLUE); });
ArduinoOTA.onEnd( []() { display_big("OTA done", TFT_GREEN); });
ArduinoOTA.onError( [](ota_error_t e) { display_big("OTA failed", TFT_RED); });
ArduinoOTA.onProgress([](unsigned int p, unsigned int t) {
String pct { (int) ((float) p / t * 100) };
display_big(pct + "%");
});
ArduinoOTA.begin();
}
void connect_mqtt() {
if (mqtt.connected()) return; // already/still connected
static int failures = 0;
if (mqtt.connect(WiFiSettings.hostname.c_str())) {
failures = 0;
} else {
failures++;
if (failures >= max_failures) panic(T.error_mqtt);
}
}
int aqc_get_co2() {
static bool initialized = false;
const uint8_t command[9] = { 0xff, 0x01, 0xc5, 0, 0, 0, 0, 0, 0x3a };
uint8_t response[9];
int co2 = -1;
for (int attempt = 0; attempt < 3; attempt++) {
hwserial1.flush();
int limit = 20; // .available() sometimes stays true
while(hwserial1.available() && --limit) hwserial1.read();
hwserial1.write(command, sizeof(command));
delay(50);
size_t c = hwserial1.readBytes(response, sizeof(response));
if (c != sizeof(response) || response[0] != 0xff || response[1] != 0x86) {
continue;
}
uint8_t checksum = 255;
for (int i = 0; i < sizeof(response) - 1; i++) {
checksum -= response[i];
}
if (response[8] == checksum) {
co2 = response[2] * 256 + response[3];
break;
}
delay(50);
}
if (co2 < 0) {
initialized = false;
return co2;
}
if (!initialized && (co2 == 9999 || co2 == 400)) return 0;
initialized = true;
return co2;
}
void mhz_setup() {
mhz.begin(hwserial1);
// mhz.setFilter(true, true); Library filter doesn't handle 0436
mhz.autoCalibration(true);
char v[5] = {};
mhz.getVersion(v);
v[4] = '\0';
if (strcmp("0436", v) == 0) mhz_co2_init = 436;
}
int mhz_get_co2() {
int co2 = mhz.getCO2();
int unclamped = mhz.getCO2(false);
if (mhz.errorCode != RESULT_OK) {
delay(500);
mhz_setup();
return -1;
}
// reimplement filter from library, but also checking for 436 because our
// sensors (firmware 0436, coincidence?) return that instead of 410...
if (unclamped == mhz_co2_init && co2 - unclamped >= 10) return 0;
// No known sensors support >10k PPM (library filter tests for >32767)
if (co2 > 10000 || unclamped > 10000) return 0;
return co2;
}
int get_co2() {
// <0 means read error, 0 means still initializing, >0 is PPM value
if (driver == AQC) return aqc_get_co2();
if (driver == MHZ) return mhz_get_co2();
// Should be unreachable
panic(T.error_driver);
return -1; // suppress warning
}
2020-11-16 22:48:15 +00:00
void setup() {
Serial.begin(115200);
Serial.println("Operame start");
digitalWrite(pin_backlight, HIGH);
2020-11-16 22:48:15 +00:00
display.init();
display.fillScreen(TFT_BLACK);
display.setRotation(1);
sprite.createSprite(display.width(), display.height());
OperameLanguage::select(T, LANGUAGE);
if (!SPIFFS.begin(false)) {
display_lines(T.first_run, TFT_MAGENTA);
if (!SPIFFS.format()) {
display_big(T.error_format, TFT_RED);
delay(20*1000);
}
}
pinMode(pin_portalbutton, INPUT_PULLUP);
pinMode(pin_demobutton, INPUT_PULLUP);
pinMode(pin_pcb_ok, INPUT_PULLUP);
pinMode(pin_backlight, OUTPUT);
WiFiSettings.hostname = "operame-";
WiFiSettings.language = LANGUAGE;
WiFiSettings.begin();
OperameLanguage::select(T, WiFiSettings.language);
while (digitalRead(pin_pcb_ok)) {
display_big(T.error_module, TFT_RED);
2020-11-17 20:40:34 +00:00
delay(1000);
}
display_logo();
delay(2000);
hwserial1.begin(9600, SERIAL_8N1, pin_sensor_rx, pin_sensor_tx);
2020-12-20 02:53:43 +00:00
if (aqc_get_co2() >= 0) {
driver = AQC;
hwserial1.setTimeout(100);
Serial.println("Using AQC driver.");
} else {
driver = MHZ;
mhz_setup();
Serial.println("Using MHZ driver.");
}
2020-11-25 00:55:40 +00:00
for (auto& str : T.portal_instructions[0]) {
str.replace("{ssid}", WiFiSettings.hostname);
}
wifi_enabled = WiFiSettings.checkbox("operame_wifi", false, T.config_wifi);
ota_enabled = WiFiSettings.checkbox("operame_ota", false, T.config_ota) && wifi_enabled;
2020-11-16 22:48:15 +00:00
WiFiSettings.heading("CO2-niveaus");
co2_warning = WiFiSettings.integer("operame_co2_warning", 400, 5000, 700, T.config_co2_warning);
co2_critical = WiFiSettings.integer("operame_co2_critical",400, 5000, 800, T.config_co2_critical);
co2_blink = WiFiSettings.integer("operame_co2_blink", 800, 5000, 800, T.config_co2_blink);
2020-11-16 22:48:15 +00:00
WiFiSettings.heading("MQTT");
mqtt_enabled = WiFiSettings.checkbox("operame_mqtt", false, T.config_mqtt) && wifi_enabled;
String server = WiFiSettings.string("mqtt_server", 64, "", T.config_mqtt_server);
int port = WiFiSettings.integer("mqtt_port", 0, 65535, 1883, T.config_mqtt_port);
max_failures = WiFiSettings.integer("operame_max_failures", 0, 1000, 10, T.config_max_failures);
mqtt_topic = WiFiSettings.string("operame_mqtt_topic", WiFiSettings.hostname, T.config_mqtt_topic);
mqtt_interval = 1000UL * WiFiSettings.integer("operame_mqtt_interval", 10, 3600, 60, T.config_mqtt_interval);
mqtt_template = WiFiSettings.string("operame_mqtt_template", "{} PPM", T.config_mqtt_template);
WiFiSettings.info(T.config_template_info);
2020-11-16 22:48:15 +00:00
WiFiSettings.onConnect = [] {
display_big(T.connecting, TFT_BLUE);
check_portalbutton();
2020-11-16 22:48:15 +00:00
return 50;
};
WiFiSettings.onFailure = [] {
display_big(T.error_wifi, TFT_RED);
2020-11-16 22:48:15 +00:00
delay(2000);
};
static int portal_phase = 0;
static unsigned long portal_start;
WiFiSettings.onPortal = [] {
if (ota_enabled) setup_ota();
portal_start = millis();
};
WiFiSettings.onPortalView = [] {
if (portal_phase < 2) portal_phase = 2;
};
WiFiSettings.onConfigSaved = [] {
portal_phase = 3;
};
WiFiSettings.onPortalWaitLoop = [] {
if (WiFi.softAPgetStationNum() == 0) portal_phase = 0;
else if (! portal_phase) portal_phase = 1;
display_lines(T.portal_instructions[portal_phase], TFT_WHITE, TFT_BLUE);
if (portal_phase == 0 && millis() - portal_start > 10*60*1000) {
panic(T.error_timeout);
2020-12-26 17:09:11 +00:00
}
2020-11-16 22:48:15 +00:00
if (ota_enabled) ArduinoOTA.handle();
if (button(pin_portalbutton)) ESP.restart();
2020-11-16 22:48:15 +00:00
};
if (wifi_enabled) WiFiSettings.connect(false, 15);
static WiFiClient wificlient;
if (mqtt_enabled) mqtt.begin(server.c_str(), port, wificlient);
if (ota_enabled) setup_ota();
}
#define every(t) for (static unsigned long _lasttime; (unsigned long)((unsigned long)millis() - _lasttime) >= (t); _lasttime = millis())
2020-11-16 22:48:15 +00:00
void loop() {
static int co2;
every(5000) {
co2 = get_co2();
Serial.println(co2);
}
every(50) {
if (co2 < 0) {
display_big(T.error_sensor, TFT_RED);
} else if (co2 == 0) {
display_big(T.wait);
} else {
// some MH-Z19's go to 10000 but the display has space for 4 digits
display_ppm(co2 > 9999 ? 9999 : co2);
}
}
2020-11-16 22:48:15 +00:00
if (mqtt_enabled) {
mqtt.loop();
every(mqtt_interval) {
if (co2 <= 0) break;
2020-11-16 22:48:15 +00:00
connect_mqtt();
String message = mqtt_template;
message.replace("{}", String(co2));
2020-11-16 22:48:15 +00:00
retain(mqtt_topic, message);
}
}
if (ota_enabled) ArduinoOTA.handle();
check_buttons();
2020-11-16 22:48:15 +00:00
}